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1 INTRODUCTION 
 
Data mining plays a crucial role in the overall goal of EURECA. The aimed link 
between clinical research and clinical care systems requires methods to extract the 
relevant data and patterns out of the overwhelming large amounts of available data. 
Furthermore, this information needs to be presented to the health care professional 
and the patient in a highly interpretable fashion. Data mining in EURECA is mainly 
developed and applied in scenarios such as diagnostic classifiers, outcome prediction 
and hypothesis generation but other scenario’s will use them also, like for example the 
text mining from EHRs for extraction of meaningful information to populate research 
databases. This deliverable will describe the state-of-the-art methods involved in data 
mining with the specific focus on EURECA specific aims and tools.  
 
The structure of this deliverable is as follows. Section 2 summarizes which technical 
scenarios use data mining techniques and which type of data mining. Section 3 then 
provides a review of the useful methods, including references to available tools. 
Section 4 describes specifically for each of the data mining involved technical 
scenarios which methods are used or suggestions will be made based on similar 
published tools. Section 5 provides an overview of the relevant tools and platforms to 
develop the data mining methods in. In general, many references to tools or packages 
are provided with the focus in the free software package R. This choice is motivated in 
section 5.    
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2 DATA MINING IN EURECA 
 
This section provides an overview of all the data mining methods used in EURECA in Table form (Table 1).  
 
Table 1. Overview of technical scenarios and their corresponding classification in data mining techniques    
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Information 

SIT2 
VUA2 
UdS3 

Personal medical information recommender StoneRoos x  x   x  x   

FORTH1 Export from an HER to a PHR FORTH           

UdS2 Data mining for consultation FhG IAIS   x   x  x x  

VUA1 
C-P1 

Contextualized overview  VUA      x     

Investigation 
Guidelines 

UdS4 
Maastro1 

Update of guidelines  VUA      x  x   

UOXF1 
Maastro4 

Train, validate and updating a diagnostic 
classifier 

UOXF x  x x x x x x x x 

Investigation 
Protocol & 
research 

UdS5 Broad consent Custodix           

UdS6 Hypothesis generation UOXF x x x x x  x x   

VUA3 
UdS7 

Protocol feasibility  Philips           

Selection & 
Recruitment 
Treatment choice 

UdS8 Microbiology SAE FhG IBMT           

Maastro2 
Maastro3 

Outcome prediction UOXF x  x x x X x x x x 
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UOXF1 
Maastro4 

Use a diagnostic classifier  UOXF x          

Selection & 
Recruitment 
Patient trial 
recruitment  

Maastro5 
Maastro6 
IJB1 
BIG1 
BIG2 
UOXF2 
UdS9 

Trial recruitment  Custodix x x    x x  x x 

Reporting 

IJB2 Reporting episodes of febrile neutropenia IJB           

IJB3 
IJB4 
IJB5 

Cancer registry and tumour bank reporting IJB       
 

   

Maastro7 Pre-filling of CRF and AE reports UPM           

Maastro8 
UdS10 
UdS11 

Automatic detection and reporting of 
SAEs/SUSARs 

FhG IBMT x  x x  x x x   

Long-term follow-
up 

IJB6 
IJB7 
UOXF3 
IJB8 
IBMT1 
UdS12* 

Long-term follow-up and patient diary* FORTH      x 

 

x x  

Economic analysis UdS13 
Analyse economic data between different 
procedures 

FhG IAIS x  x x   x  x x 
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3 DATA MINING APPROACHES AND METHODS 
 
The previous sections described the different technical scenarios and use cases that 
use data mining techniques to accomplish their aim. Below the state-of-the-art data 
mining techniques are described in more detail including references to use cases and 
literature. This is an extension on the brief data mining overview which was given in 
D5.1. The described methods are not all methods available, but only the main areas 
that will be useful and used in EURECA. We will refer to this proposed classification 
throughout the document, starting with Table 1. This table provides only a quick 
reference overview. Methods classified per scenario often overlap, and some of these 
are more approaches then methods. But the focus, and particularly the EURECA 
application, is different, as described in this section. We can characterise four classes 
of data-mining approaches:  

• Supervised: the data is labelled (e.g. outcome). Very important in almost 
all DM techniques, but most known for classification.     

• Unsupervised: unlabelled data. Typically unsupervised clustering 
algorithms can be used to find groups of patients with similar 
characteristics.    

• Mixed: more complex techniques which use semi-supervised learning. 

• Knowledge based: these techniques use knowledge and reasoning in their 
tasks. This knowledge is often represented by rules, frames or scripts.  

 

3.1 Data pre-processing 

New clinical trials include techniques such as high-throughput assays and imaging 
techniques which produce a very large amount of data points/variables. Thus, data 
pre-processing has become a very important step in data analysis. The main pre-
processing methods applied to medical data are:  

• Outlier detection: out-of-range values entered wrongly in the dataset or by 
measurement error can affect DM algorithms. Detecting combinations of data 
which are unlikely or impossible is also important, e.g. patient gender is male 
for cervical cancer patients. 

• Missing values: values not present in the dataset can be dealt with according 
to the task. Imputation (substituting) of the values using specific algorithms is 
common for classification problems, but not always necessary since some 
classification methods can deal with missing values.     

• Normalization: since the range of values of raw data varies widely, in some 
DM algorithms, objective functions will not work properly without normalization. 
For example, the majority of classifiers calculate the distance between two 
points by the distance. If one of the features has a broad range of values, the 
distance will be governed by this particular feature. Therefore, the range of all 
features should be normalized so that each feature contributes approximately 
proportionately to the final distance. 

• Dimensionality reduction: Reasons to reduce the number of variables in a 
dataset used for data mining are: 1) Many of the variables in the available 
datasets are correlated and not independent. To avoid over fitting and improve 
model performance, i.e. prediction performance in the case of supervised 
classification and better cluster detection in the case of clustering 2) In high 
dimensional datasets the false discovery rate can be high due to multiple 
testing, meaning that there is a risk that one will find a significant predictor b 
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chance 3) to provide faster and more cost-effective models 4) to gain a deeper 
insight into the underlying processes that generated the data. Dimensionality 
reduction approaches can be applied before the analysis or, for example in 
classification problems, whilst building the classifier. This helps gaining 
statistical power in analyses where usually the number of variables is much 
higher than the number of cases. 

 
This section will now focus on dimensionality reduction using feature selection since in 
EURECA we deal with high dimensional datasets and due to the complexity of this 
domain, feature selection is one of the most common pre-processing steps for 
extracting knowledge from genomic data. 
 
 

3.1.1 Feature selection 

 
Reduction of the dimensionality of data is a well-known problem in machine learning 
and data mining, denoted as feature selection.1 In its general form the problem could 
be stated as follows: 
 

Given a set of features (attributes or descriptors, i.e., molecular markers) m and a target 

variable T (i.e., phenotypic classes); Find an optimal subset r of features, r ⊂ m that 
achieves maximum classification performance over T for a given set of predictors 
(classifiers) and respective classification performance metrics (e.g., predictive accuracy, 
sensitivity, specificity etc). 

 
A strategy for feature selection should implement a search through the space of 
possible feature subsets that addresses the following landmark questions2:  

• Where to start and to which direction the search?  
o Begin with an empty set and start adding individual (or subset of) 

‘useful’ features or, begin with all (or part of) the features and start 
removing ‘useless’ features 

• How to assess the usefulness of features?  
o The two main strategies are the filter and wrapper approaches (see 

below) 

• How to search?  
o As an exhaustive search is intractable (especially for huge dimensional 

domains, like microarray gene expression data) heuristic search 
methods should apply 

• When to stop the search?  
o Adding of removing features could stop when none of the alternatives 

improves performance (e.g., predictive accuracy).  
In the light of these observations, a general feature selection process could be realized 
in three basic steps (Error! Reference source not found.): generation, evaluation, 
stopping criterion, and validation (on external test cases) of the selected feature 
subset3. 
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Figure 1. The generalized feature selection methodology: components and operational flow – the 
“generalization” component is shaded to point its major importance in the underlying feature space search 
process. 

Given a domain with m input features, finding the best feature subset in an exhaustive-
search mode (i.e., in a 2m space of feature subsets) is known to be NP-hard4, with the 
search to become quickly computationally intractable.  

3.1.1.1 Basic Feature Selection Strategies (Filters and wrappers) 

The intractability of a complete features’ space search, forces us to concentrate on 
heuristic search approaches where, with the risk of losing solutions, optimality could be 
approximated. The long-term machine learning and data mining research have 
elaborated on two major families of feature selection methodologies realized by 
different heuristic space search strategies: the filter and the wrapper methods.  

• Filters: In the filter-based feature selection (FFS) approach the feature space 
is not explored via the use of an induction algorithm; instead the features (or, 
subset of features) are evaluated and selected on the basis of their statistical 
properties. In most cases the evaluated property relates to the power of the 
features to discriminate between the classes, as assessed by respective 
feature scores or ranks. FFS is utilized as a pre-processing step in order to 
select the most characteristics and/or discriminant (with respect to the available 
classes) features. Then, a particular classifier may be applied on the reduced 
dataset. So, FFS techniques are not classifier specific. In filter-based 
approaches, selection implies deployment of a scoring or, ranking procedure, 
to measure the power of a gene to discriminate between the different sample 
categories.  

• Wrappers: In the wrapper-based feature selection (WFS) approach the feature 
subset selection algorithm exists as a wrapper around the utilized induction 
algorithm, that is: the induction algorithm itself (considered as a ‘black-box’) is 
used as part of the feature subset evaluation function. In other words, the 
feature selection component is embedded in the algorithm, carrying of course 
the classifier’s bias.  In the worst, exhaustive search case - where all different 
feature subsets should be evaluated, WFS approaches exhibits an exponential 
to the number of features m (time) complexity, O(2m). As already noted this is 
impractical for gene expression studies. More economical wrapper-based 
features selection algorithms have been proposed. One such simple algorithm 
is implemented by backward elimination where the search starts with the full 
set of features and proceeds by greedily removing features until performance 
starts to degrade. Another option is forward selection where, one starts with the 
empty set and proceeds by greedily adding features until no further 
improvement can be achieved. Due to their high computational complexity 
WFS techniques have not received much interest. In order to cope with this, a 
reduction of the feature space is applied first (e.g., following a filter approach), 
followed by the wrapper or embedded component on the reduced data set, 
hence fitting the computation time to the available resources..  
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Combined hybrid filter-wrapper techniques have been also proposed. Such techniques 
base their selection strategy on a pre-ordered ranking of features followed by an 
incremental feature selection process. With this approach, the respective 
computational burden is relaxed at great extent. 

3.1.1.2 Feature selection for EURECA 

The advent of genomic and proteomic high-throughput technologies enabled a 
‘systems level analysis’ by offering the ability to measure the expression status of 
thousands of genes in parallel, even if the heterogeneity of the produced data sources 
make interpretation especially challenging. The high volume of data being produced by 
the numerous studies worldwide, post the need for a long-term initiative on bio-data 
analysis in the context of ‘translational bioinformatics’ research.  
In the context of EURECA feature selection is relevant for applying data mining on 
clinical data but essential for the identification of relevant biomarkers that accurately 
predict risks in patients and to validate new hypotheses using large (genomic) studies. 
For such a high dimensional domain, where one must explore the space of 230000 gene 
subsets, an exhaustive search is practically impossible. It is proved that, in the case 
that the evaluation criterion possesses the monotonicity property (i.e., a subset of 
features should be not better than any larger set that contains the subset) an optimal 
subset of features could be found without evaluating the whole space of 2m feature 
subsets5.  
 

3.2 Similarity Learning (SL) 

Similarity Learning consists of classification on pairwise similarities. In contrast to other 
machine learning methods, similarity learning does not assume that objects are well 
represented in a Euclidean feature space. This is useful for problems in bioinformatics, 
information retrieval and many other areas with diverse object representations. In 
EURECA for example we want to find similar clinical trials. Since clinical trials more 
frequently now include pathology, genomic and imaging data, the representation of 
semantic similarity will need to be defined in extremely complex data space. 
 
A typical application of similarity learning is a recommender system. They attempt to 
recommend information items that are likely to be of interest to the user. “Typically, a 
recommender system compares a user profile to some reference characteristics, and 
seeks to predict the 'rating' or 'preference' that a user would give to an item they had 
not yet considered.”6 Many algorithms used for recommender systems and gene 
pattern recognition are based on distance measures. The distance indicates the 
similarity of information items. Then, those items are recommended that are “closest” 
to match the user profile. User interaction can be used as feedback to improve the 
similarity models, in that the system will observe the choices made by the user with 
regard to the “similar items” offered, extending the list of similar items as input for 
similarity learning. 
 
The key idea of similarity learning is to replace fixed distance functions by learning a 
function that produces a non-negative real number for any pair of examples. The 
intended semantic is that the higher this number the more similar the two examples 
are. The training data that the function learns from consist of example pairs labelled as 
similar or dissimilar. 
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The learning framework is generic, in that information items are considered as 
structured objects (of arbitrary nature). For instance, the information item may be a 
document with a substructure given by “title”, “author”, “abstract”, “main text”, and, 
eventually, “metadata”. Typically, similarity learning proceeds by attaching basic 
distance measures to the atomic components, eventually as well to structural 
properties, and then by learning weight coefficients applied to the basic distance 
measures. More formally, let D be a set of base distance measures. Then the distance 
of two “points” x, y is defined by where are the weight coefficients. Points are typically 
n-tuples of atomic components but may as well be structures such as trees or graphs. 
Basic distance measures are distinguished by the type of the atomic component. A 
number of distance measures, well known from the literature7, are listed below: 

• String 
o LevensteinSimilarity, BlockDistance, DiceSimilarity, 

JaroWinklerSimilarity, MatchingCoefficient, JaccardSimilarity, 
CosineSimilarity on words, ChapmanLengthDeviation, 
ChapmanMatchingSoundex, ChapmanMatchingSoundexSpanish, Jaro, 
MongeElkan, NeedlemanWunch, OverlapCoefficient, QGramsDistance, 
SmithWaterman, SmithWatermanGotoh, 
SmithWatermanGotohWindowedAffine, SoundexEnglish, 
SoundexSpanish, 

• Numbers, Number series 
o EuclideanDistance, CosineSimilarity, CamberraDistance, 

ChebychevDistance, CorrelationSimilarity, JaccardSimilarity, 
ManhattanDistance 

• Boolean 
o Jaccard Similarity, Dice Similarity, Matching Koeffizient, Cosinus 

Similarity 

• Text 
o Cosine distance on n-grams 

• Structured Data 
o Hierarchies in the data may be reflected by taking the path length into 

account. 
o Hierarchy in structures such as trees or graphs may be reflected by 

taking the path length into account. 
 
The result of similarity learning is a similarity model that consists of the weight 
coefficients for the basic distance measures. 
 
Due to the variety of information objects, the question of how to define a similarity for 
them is a challenging task. It is even more complicated in case the definition of 
similarity depends on user needs. It makes no sense to generalize a recommendation 
function among multiple users. There is a requirement for an easy-to-use service that 
each user can create a similarity model according to his/her particular preferences.  
 
At the same time, a typical user will be unwilling to spend a lot of time to set up a 
recommendation system. The process of obtaining labelled data is costly in terms of 
time and manual effort. In order to start learning with n examples, the user needs to 
give his feedback for n * (n−1) object pairs. Hence, he should be only asked for input 
that he can give quickly and correctly. In particular, it is very favourable to ask the user 
only questions regarding specific instances, for which domain experts can usually give 
very concrete feedback. As an example, when recommending papers to read, it is 
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better to ask the user “is this paper relevant to you?” instead of “do you like to see 
more papers of the same author?” In order to reduce the user’s efforts in labelling, the 
selection of a small set of pairs that is informative enough to create an accurate model 
is necessary. Intelligent sampling strategy that selects the most ‘interesting’ pairs from 
a pool of unlabelled data to show them to the user exist8. 
 

3.3 Association Rule Discovery 

Association rule discovery (ARD) considers the problem of discovering association 
rules between items in a large databases; it has been applied extensively for example 
to databases of sales transactions but less so to the clinical or medical sciences. 
Algorithms have been proposed and tested mainly for categorical data and less for 
numerical data. This is because it does not perform well for numeric data9-14. An ARD 
algorithm requires a collection of instances as input and provides rules to predict the 
values of any attribute(s) (not just the class attribute) from values of other attributes as 
output.   
 
ARD can also be used to do an integrative analysis of microarray data. The approach 
can integrate gene annotations and expression data to discover intrinsic associations 
among both data sources based on co-occurrence patterns, which can help in 
determining the cause of mutation in tumours and diseases. Typical annotations are 
metabolic pathways, transcriptional regulators and Gene Ontology categories. 
Previous studies automatically extracted associations revealing significant 
relationships among these gene attributes and expression patterns, where many of 
them are clearly supported by recently reported work.14, 15 
 
Available R-package: http://cran.r-project.org/web/packages/arules/index.html  

3.4 Classification 

Classification is a mining technique based on machine learning; it is used to classify 
each item in a set of data into one of predefined sets of classes or groups. The data 
classification process involves a learning phase and classification phase. In the 
learning phase a set of training data are analysed by a classification algorithm; then in 
the classification phase data are used to estimate the accuracy of the classification 
rules. If the accuracy is acceptable the rules can be applied to any new and similar 
data. The classifier-training algorithm uses these pre-classified examples to determine 
the set of parameters required for proper discrimination. The algorithm then encodes 
these parameters into a model called a classifier. There are different algorithms to do 
this classification, each of them having their strengths and weaknesses, and their 
optimal data type suitability. A set of well-known and state-of-the-art extensions and 
applications of these algorithms is discussed in this subsection.  
 

3.4.1 Support vector machines 

This method was introduced in 1995 16 and is since then widely used in bioinformatics 
and other fields due to its high accuracy, the ability to deal with high-dimensional data 
(such as gene expression) and the flexibility of modelling diverse sources of data. 
SVMs belong to the general category of kernel methods. A kernel method only 
depends on the data through dot-products. In that case, a dot product can be 
computed in a possibly high dimensional feature space by replacing the dot-product 



 
 
 
 
 
 

 
© EURECA <Public> 

WP 5 D 5.2,  version 0.2

EURECA

ICT-2011-288048

Page 14 of 47

with a kernel function. This has two advantages: 1) the ability to generate non-linear 
decision boundaries using methods designed for linear classifiers 2) The use of kernel 
functions allows the user to apply a classier to data that have no obvious fixed-
dimensional vector space representation. In general SVMs are sensitive to the way 
features are scaled. Therefore it is essential to normalize the data because the 
accuracy of the classifier can degrade severely. As in most other classifiers, feature 
selection is important in SVMs; not necessarily to improve accuracy, but to understand 
better the data and the classification results.  
 

 
Figure 2. Concept of SVMs: maximizing the margin between two labelled groups of samples. The samples that 
define the margin are called support vectors. This is an extreme example with no misclassifications. In 
practice, soft margins are used that take misclassification rate into account in the maximizing process.  

Advantages: 

• Accurate and robust classification results on different data types 

• Uses a subset of training points in the decision function so it is also memory 
efficient. 

• Expert knowledge can be implemented by designing the kernel  

• Convex optimisation problem (no local minima in optimisation process) 

• Non-linear modelling ability 

• Strong theoretical basis 
 
Disadvantages:  

• Classification in a black box fashion, i.e. they do not provide the user much 
information on why a particular prediction was made. 

• Most SVMs are two-class classifiers, although multi-class classifiers exist but 
they are computationally more expensive.   

• SVMs do not directly provide probability estimates  
 
Published applications:  

• MicroRNA profiling to distinguish lung cancer patients from healthy controls.17 

• Gene and microRNA expression predicts nodal involvement in breast cancer.18  

• Prediction of event-free-survival for neuroblastoma patients using miRNA 
expression.19 

   

3.4.2 Random forests 

3.4.2.1 Decision trees  

To understand the concept of random forests the decision tree classifier needs to be 
explained. Decision trees try to find ways to divide the universe into successively more 
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subgroups (creating nodes) until each addresses only one class or until one of the 
classes shows a clear majority that does not justify further divisions, generating in this 
situation a leaf containing the class majority (example: Figure 3). The algorithm starts 
with a training set in which the classification label is known for each record. The 
algorithm then systematically tries to break up the records into two parts, examining 
one variable at a time and splitting the records on the basis of a dividing line in that 
variable. The objective is to attain an as homogeneous set of labels as possible in 
each partition. This splitting or partitioning is then applied to each of the new partitions. 
The process continues until no more useful splits can be found. In this way a decision 
tree is constructed which is highly interpretable. The heart of the algorithm is the rule 
that determines the initial split rule. In general, every possible split is tried and 
considered, and the best split is the one which produces the largest decrease in 
diversity of the classification label within each partition. Another concept which is 
applied in the development of decision trees is pruning. This is the process of 
removing leaves and branches to improve generalizability of the tree for new data 
because in some nodes the populations are not representative anymore.  
 

 
Figure 3. Simple example of a decision tree for CLN2 gene regulation by three explaining genes

20
  

 

3.4.2.2 Supervised random forests 

 
A random forest actually grows a collection of many classification trees. To classify a 
new object, this object is input for each of the trees in the forest. After each tree 
provides a classification, the forest picks the classification having the most votes. Each 
tree is grown as follows:  

1. If the number of cases in the training set is N, sample N cases at random from 
the original data (with replacement) as a training set.  

2. If there are M input variables, a number m<<M is specified such that at each 
node, m variables are selected at random out of the M and the best split on 
these m is used to split the node. The value of m is held constant during the 
forest growing. 

3. There is no pruning, so each tree is grown to the largest extent possible. 
 
The forest error rate depends on: 

1. The correlation between any two trees in the forest. Increasing the correlation 
increases the forest error rate. 

2. The strength of each individual tree in the forest. A tree with a low error rate is 
a strong classifier. Increasing the strength of the individual trees decreases the 
forest error rate. 
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The task is to find the optimal range for the value of m because correlation and 
strength go up or go down simultaneously when altering m. To find the optimal m, the 
oob (out-of-bag) error rate is in general used. This error rate provides an internal 
validation of the test set error: A different bootstrap sample from the original data is 
used to construct each tree. One-third of this bootstrapped data is left out to test on the 
same tree. These classified “new” cases are compared to their actual class and the 
error estimate is averaged over all cases, providing an unbiased error rate.     
 
Advantages: 

• Very accurate method overall 

• Can handle high dimensional inputs 

• Provides variable importance estimates 

• Can deal with missing data accurately 
 
Disadvantages:  

• Risk of overfitting in noisy classification tasks  

• For data including categorical variables with different number of levels, random 
forests are biased in favour of those attributes with more levels. 

 
Published applications:  

• Finding specific mutations for melanomas using RF.21 

• Identification of microRNAs associated with overall patient survival in 
neuroblastoma.22 

 
 
 

3.4.3 Bayesian networks 

A Bayesian network (BN) is a graphical model that encodes probabilistic relationships 
among variables of interest. In particular, each node in the graph represents a random 
variable, while the edges between the nodes represent probabilistic dependencies 
among the corresponding random variables (Figure 4). There are three general tasks 
for the development of BNs:  

1. Structure learning: the structure of the network can be provided by an expert, 
be learned from the data, or both.  

2. Parameter learning: given the structure of the network, for each node the 
variable distribution needs to be estimated given the information of the 
“parents” nodes.  

3. Inferring unobserved variables: the network can be used to find out updated 
knowledge of the state of a subset of variables when other variables (the 
evidence variables) are observed.     
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Figure 4. A Bayesian Network representing a hypothetical gene-regulation pathway. This structure of a 
hypothetical Bayesian Network contains five nodes. The probabilities associated with this network structure 
are not shown. The network structure indicates that Gene1 can regulate (influence) the expression level of 
Gene3, which in turn can regulate the expression level of Gene5.

23
 

 
Advantages:  

• BN can deal with incomplete datasets 

• Causal relationships can be learned  

• They facilitate the use of prior knowledge 

• No data preprocessing required to avoid overfitting  

• Easy to interpret visualization of the model 
 
Disadvantages:  

• Very sensitive to the (subjective) structure of the network 

• Costly computational task 

• Not all BN software can deal with continuous data (discretization required) 

• Feedback effects cannot be included in the network (acyclic nature of BNs) 
 
Published applications: 

• Modeling local failure in lung cancer using clinical, dosimetric variables and 
blood biomarkers.24 

• Discriminating responders and non-responders for head and neck cancer 
patients with specific gene clusters.25  

 

3.4.4 Artificial neural networks 

The concept of a neural network (NN) learning algorithm is inspired by the structure 
and functional aspects of biological neural networks. Computations are structured in 
terms of interconnected artificial neurons, which are usually non-linear in nature. 
These networks are constructed with an input layer with all the variables, one or more 
hidden layers, and an output layer which produces the estimation of your target 
outcomes (Figure 5). 
 

 

Figure 5. Example of an artificial neural network with one hidden layer (http://offthelip.org)  

 
Advantages:  

• Powerful technique utilized across scientific disciplines.  

• Theoretically well suited to non-linear processes 
 
Disadvantages: 
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• Not transparent and therefore hard to interpret results (“black box” concept) 

• Technically difficult to understand 

• Empirical nature of model development 

• Computationally expensive 
 
Published applications:  

• NN was better in predicting breast cancer survival than decision trees and 
logistic regression using gene expression data.26 

• Modelling interaction between mRNA and microRNA using fuzzy neural 
networks27  

 
 
 

3.4.5 Data types  

The selection of a classifier mainly depends on the input data that is provided. One 
can distinguish continuous data and discrete data, which can be categorical (nominal) 
or ranked (ordinal). Table 2 shows some examples of these data types.   
 
Table 2. Cancer related examples of categorical and continuous data for different sources  

Input origin  Discrete (category/ranked) Continuous  
Clinical 
 

Tumour stage 
Health performance score (1-4) 

Age 
Blood pressure 

Imaging Tumour invasion >20mm (yes/no) 
Nr of lymph nodes (0, 1-3, >3) 

Tumour heterogeneity  
Tumour sphericity  

Genomics 
 

Copy number  Gene expression levels 
RNA expression levels 

Treatment  
 

Chemo administration (yes/no) 
 

Radiotherapy dose 
Time to surgery 

 
In Table 3 the mentioned classification methods are compared for the abilities to deal 
with different data, low sample sizes, high dimensionality, distributed learning and 
rapid learning. 
  
Table 3. Suitability of classification methods based on type of input data   
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SVM (3.4.1) Both Fair Good Fair Fair Yes Yes 
RF (3.4.2) Both Fair Good Fair Fair No Yes 
BN (3.4.3) Categorical Poor Poor Good Good Yes Yes 
NN (3.4.4) Both  Poor Poor Fair Poor No Yes 
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There have been several classifier comparison studies published, also in the genomics 
domain. Testing 22 diagnostic and prognostic microarray-based datasets by SVMs 
and RFs showed that random forests are outperformed by support vector machines 
both in the settings when no gene selection is performed and when several popular 
gene selection methods are used.28 On the other hand, random forests are found to be 
optimal when feature distributions were skewed and when class distributions were 
unbalanced.29 Another study found that BNs are outperforming SVMs and RFs when 
classifying mood disorders based on gene expression and SNP data, but differences 
in performance are small. 30 

 

3.5 Clustering  

Clustering is a data mining technique that defines groups of observations that have 
similar characteristics. Contrarily to classification where objects are assigned into 
predefined classes, clustering both defines the classes and assigns objects to them. 
By using clustering techniques we can identify particular regions in object space and 
can discover overall distribution pattern and the correlations among data attributes. 
Types of clustering methods that we discuss in this deliverable are hierarchical 
clustering, partitioning clustering, unsupervised random forests, Bayesian clustering 
and other techniques like coexpression networks, integrative clustering and consensus 
clustering.   
 
The reasons to do unsupervised clustering:  

1. Hypothesis generation  
2. Labelling large data sets can be very costly 
3. Changes in patterns over time can be detected 
4. Data categorization purposes  
5. As exploratory phase of data analysis  

 
For EURECA we will use clustering especially for hypothesis generation. For example 
for the genomic field, suppose genes A and B are grouped in the same cluster, then 
we hypothesis that genes A and B are involved in similar function. If we know the role 
of gene A is apoptosis but we do not know if gene B is involved in apoptosis, we can 
do experiments to confirm if gene B indeed is involved in apoptosis. 
 
The tools for unsupervised learning and clustering are the same as for classification, 
where R is the main focus for Eureca. For R most clustering tools are summarized and 
available at: R: http://cran.r-project.org/web/views/Cluster.html  
  

3.5.1 Hierarchical clustering 

Hierarchical clustering31 is based on the core idea of data points being more related to 
nearby data points than to data points farther away, meaning that these algorithms 
connect data points to form clusters based on a distance measure. This clustering is 
called hierarchical because these algorithms do not provide a single partitioning of the 
data set, but instead provide an extensive hierarchy of clusters that merge with each 
other at certain distances. Two types can be distinguished: agglomerative, where each 
observation start in its own cluster and pairs of clusters are merged as one moves up 
the hierarchy, and divisive, in which all observations start in one cluster and splits are 
performed moving down the hierarchy. A useful feature of this type of clustering is the 
formation of a dendrogram, which visually shows the formation of clusters when the 
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distance threshold is varied. A published example is provided in Figure 6, showing also 
the dendrogram and the identified clusters at the top.  
 

 
Figure 6. Coexpression map of 534 genes that are clustered hierarchically, identifying five gene clusters in 115 
breast cancer tissue samples.

32
 

 
Advantages:  

• Number of clusters not required in advance  

• No input parameters (except choice of similarity)  

• Computes complete hierarchy of clusters  

• Integration of result visualizations  
 
Disadvantages:  

• Interpretation of the hierarchy is complex 

• Only effective at splitting small amounts of data 

• Sensitive for outliers because outliers may become their own clusters or will 
falsely connect distant clusters. 

• No automatic discovering of optimal clusters 
 
Published applications:  

• Exploring miRNA deregulation and candidate miRNA markers for follicular 
carcinomas that can be used diagnostically33 

• Predicting prognosis in colorectal cancer using hierarchical clustering for gene 
expression34     

 
 

3.5.2 Partitioning clustering  

The most well-known and widely used partitioning clustering algorithm is K-means 
clustering35. This method, originating from 1957, aims to partition n observations into k 
clusters in which observation belongs to the cluster with the nearest mean. The idea is 
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to choose random cluster centers, one for each cluster. These centers are preferred to 
be as far as possible from each other.   
 

 
Figure 7. Artificial example of k-means clustering for randomly and normally distributed clusters (k=3)

36
  

 
Advantages:  

• Computationally fast for large samples (and for small k) 

• Produces tight clusters, especially for globular clusters (convex or 
spherical/elliptical) 
 

Disadvantages:  

• Inappropriate choice of k may yield poor results (diagnostic checks are 
required) 

• Sensitive to the randomly chosen initial cluster centres 

• The tendency of k-means to produce equivalent sized clusters can lead to 
counterintuitive and false results  

• Might converge to local optimum, resulting in clusters close to the initial 
partitioning    

• Works not well with non-globular clusters 
 
Published applications:  

• Weighted K-means clustering for microarray data37 

• Classification of breast cancer using gene expression, copy number variations 
and microRNA38 

 

3.5.3 Unsupervised random forests 

 
Random forests are usually used for supervised learning, but unsupervised learning is 
also possible39. The approach is to consider the original data as class 1 and to create 
an artificial second class of the same size that will be labelled as class 2. The artificial 
second class is created by sampling at random from the univariate distributions of the 
original data, meaning that class two has the distribution of independent random 
variables. Class 2 thus destroys the dependency structure in the original data. Now, 
two classes are created and this two-class problem can be run through random 
forests. The higher the misclassification rate in this two-class problem is, the input 
variables are looking too much like independent variables (low discrimination). Other 
way around, if the misclassification rate is low, the dependencies between the input 
variables are playing an important role. 




