

ICT-2011-288048

EURECA

Enabling information re-Use by linking clinical
Research and CAre

IP
Contract Nr: 288048

Deliverable D3.5: Intermediary-stage IE components

Due date of deliverable: (07-31-2014)
Actual submission date: (08-30-2014)

Start date of Project: 02-01-2012 Duration: 42 months

Responsible WP: WP3

Revision: <outline, draft, proposed, accepted>

Project co-funded by the European Commission within the Seventh Framework
Programme (2007-2013)

Dissemination level

PU Public X

PP Restricted to other programme participants (including the Commission Service

RE Restricted to a group specified by the consortium (including the Commission
Services)

CO Confidential, only for members of the consortium (excluding the Commission
Services)

WP3 D3.5, Version 1.0

EURECA

ICT-2011-288048

Page 2 of 38

© EURECA <Public>

0 DOCUMENT INFO

0.1 Authors

Author Company E-mail
Salah Aït-Mokhtar Xerox Salah.Ait-Mokhtar@xrce.xerox.com

Berry de Bruijn NRC Berry.DeBruijn@nrc-cnrc.gc.ca

Vassilina Nikoulina Xerox Vassilina.Nikoulina@xrce.xerox.com

0.2 Reviewers

Internal reviewing by:
- Zhisheng Huang (VUA)
- Cyril Krykwinski (IJB)

0.3 Documents history

Document
version #

Date Change

V0.01 06.11.2014 Starting version: template, ToC proposal

V0.02 07.15.2014 Added a draft for term compiler description

V0.03 07.18.2014 Added evaluation experiment for ML-based RE

V0.04 07.30.2014 Added a draft for describing new CI method

V0.10 08.20.2014 First document draft, bib references missing

V0.12 08.21.2014 Complete version, sent to internal reviewers

V0.12 08.28.2014 Edits, based on reviewers comments

Sign off 08.29.2014 Signed off version (sent for approval to PMT
members)

V1.0 08.30.2014 Final version, sent to the PMT for submission

0.4 Document data

Keywords

Editor Address
data

Name: Salah Aït-Mokhtar
Partner: Xerox
Address: 6 chemin de Maupertuis, 38240 Meylan, FR
Phone: +33 (0)4.76.61.50.87
Fax:
E-mail: Salah.Ait-Mokhtar@xrce.xerox.com

Delivery date 08-30-2014

WP3 D3.5, Version 1.0

EURECA

ICT-2011-288048

Page 3 of 38

© EURECA <Public>

0.5 Distribution list

Date Issue E-mailer
 Eduardo.GONZALEZ-OTERO@ec.europa.eu

 CNECT-ICT-288048@ec.europa.eu

WP3 D3.5, Version 1.0

EURECA

ICT-2011-288048

Page 4 of 38

© EURECA <Public>

Table of Contents

0 DOCUMENT INFO ..2

0.1 Authors ..2
Author... 2
Company .. 2
E-mail ... 2

0.2 Reviewers ..2

0.3 Documents history ...2
Document version # .. 2
Date ... 2
Change ... 2

0.4 Document data ..2
Keywords ... 2
Editor Address data .. 2
Delivery date .. 2

0.5 Distribution list ...3
Date ... 3
Issue .. 3
E-mailer .. 3

1 INTRODUCTION ...6

2 CONCEPT IDENTIFIER: THE NEW VERSION ..8

2.1 Background and motivations ..8

2.2 Overview of the new version ...9

2.3 Terminology compiler ..9

2.3.1 OVERVIEW .. 9

2.3.2 TERM FINITE-STATE TRANSDUCER ... 11

2.4 Term identification method .. 14

2.4.1 OVERVIEW .. 14

2.4.2 TYPOGRAPHICAL NORMALIZATION ... 17

2.4.3 MORPHOLOGICAL (INFLECTIONAL) NORMALIZATION 17

2.4.4 ORTHOGRAPHICAL NORMALIZATION .. 18

2.4.5 SPELLING ERROR NORMALIZATION .. 19

2.5 Using the new concept identifier .. 20

2.5.1 CUSTOMIZING WITH UMLS TERMINOLOGIES 20

2.5.1.1 Downloading UMLS data ... 21

2.5.1.2 Selecting and compiling UMLS terminologies for the concept identifier 21

2.5.2 CUSTOMIZING WITH NON-UMLS TERMINOLOGIES 21

2.5.3 RUNNING THE CONCEPT IDENTIFIER WITH A SPECIFIC TERM DB 22

3 EXTRACTION OF RELATIONS AND ATTRIBUTES: ENHANCEMENTS
AND EXPERIMENTS WITH THE ML COMPONENT ... 24

WP3 D3.5, Version 1.0

EURECA

ICT-2011-288048

Page 5 of 38

© EURECA <Public>

3.1 Enhancements to the machine learning based component 24

3.2 Experiment .. 25

3.2.1 INTRODUCTION .. 25

3.2.2 METHOD .. 25

3.2.2.1 Task description ... 25

3.2.2.2 Data description ... 26

3.2.2.3 Study question ... 26

3.2.3 EVALUATION METRICS .. 26

3.2.4 RESULTS ... 26

3.2.5 DISCUSSION ... 28

3.2.6 FUTURE EXPERIMENTS... 28

4 CONCLUSIONS AND NEXT STEPS .. 30

5 REFERENCES.. 32

APPENDIX A DOWNLOADING UMLS TERMINOLOGIES 34

A.1 Downloading UMLS core package .. 34

A.2 Selecting and downloading a subset of UMLS terminologies 34

A.3 Additional information ... 37

WP3 D3.5, Version 1.0

EURECA

ICT-2011-288048

Page 6 of 38

© EURECA <Public>

1 Introduction

This deliverable report is a follow-up of both D3.1 (Initial prototype for concept extraction)
and D3.2 (Initial prototype for relation identification between concepts). Its purpose is to
describe the intermediary-stage status of these two information extraction (IE)
components, and the main enhancements since the delivery of the first prototypes.

The concept identifier is a tool to identify concepts and terms in medical free text. It is
meant to be general enough to be used in any EURECA use case dealing with
documents in English or French, as long as the required terminologies are selected. The
initial prototype was finalized in February 2013. After a study of existing state-of-the-art
comparable systems, and a study of existing standard terminologies and the Unified
Medical Language System (UMLS) from the National Library of Medicine (NLM), the
UMLS has been chosen as the central terminological and ontological resource on which
the concept identifier is built. The main reason is that UMLS, as a meta-thesaurus, plays
the role of a pivot linking a large number of widely used terminologies, including those
recommended within EURECA in deliverable D4.1 [Krykwinski et al., 2012]. It hence
offers the possibility of changing the initial terminologies used by the concept identifier, or
plugging other vocabularies, while still ensuring that the rest of the components and
resources (e.g. for relation extraction) remain compatible, thanks to the normalized
UMLS concepts and hierarchical semantic types.

In the initial version of the concept identifier, the terms from the source terminologies
were cleaned, modified and enriched following experiments from [Hettne et al. 2010; Wu
et al., 2012], and then manually merged with the general-language finite-state transducer
(FST) lexicon. This merging had yielded a compact and very fast term identification
process because both regular language words and medical terms were stored in and
looked up from the same single lexical FST. However, it had two downsides: (1) a lack of
adaptability of the concept identifier, since customizing it with other terminologies
required some expertise in NLP and in finite-state calculus to compile and merge the new
terms with the general-language lexicon; and (2) the internal structures of compound
terms (nested terms) were not identified, since the longest-match identification strategy
for general language words was applied. In the last months, we addressed these two
weaknesses by redesigning and re-implementing a new version of the concept identifier,
including a terminology compiler that allows the user to choose other terminologies and
automatically add them to the tool. This new version of the Xerox concept identifier is
described in details in chapter 2.

As for relation extraction, the initial prototype described in D3.2 consisted in three main
components: a regular-expression-based component, a linguistic-based component, and
a machine-learning (ML) component. In contrast with the concept identifier, the relation
extractor is a generic tool that requires being instantiated for each use case in order to
function, because it is not possible to have a single universal tool that covers all possible
relation types for all possible use cases. The instantiation of the relation extractor to a
use case consists in providing specific resources that cover the types of relations
required for said use case. For instance, for the regular expression (regex) module, the
resources are regular expression patterns covering the targeted relation types. For the
machine-learning based module, the resources would be training data, i.e. texts manually
annotated with the relations that are relevant for the use case. Finally, in the case of the
linguistic-based module, the resources consist in a set of extraction rules expressing
conditions on the linguistic structures and annotations produced by the underlying parser.

WP3 D3.5, Version 1.0

EURECA

ICT-2011-288048

Page 7 of 38

© EURECA <Public>

For the purpose of developing the initial prototype of the relation extractor, we worked on
the definition and extraction of relation types relevant for the representation of clinical trial
eligibility criteria (CTEC), and described in D3.2 an initial set of CTEC extraction rules for
the linguistic-based component.

In the last months however, we haven’t worked much on further instantiation of the
relation extractor to the use cases, partly because patient data was not yet available (use
cases: cancer registry reporting, and reporting episodes of febrile neutropenia), and also
because efforts were put on the enhancement of the concept identifier and the
development of its terminology compiler, to make it easily customizable with different
terminologies by partners working on other use cases not necessarily requiring patient
data, such as the update of guidelines, within WP6.

Much of the work done on the relation extractor in the last months has been on
enhancements to the generic system. Regarding its linguistic-based component
(XMedlan), we started working on the addition of an interactive learning layer that would
allow the user to improve the quality of its extractions, but this is still an ongoing work
with a modelling that is currently still evolving; we will therefore describe it in the next
deliverable on the IE components. However, regarding the machine-learning component,
NRC has implemented many improvements in the last months, including in computational
efficiency. An interesting evaluation experiment has also been conducted on data from
one of the editions of the i2b2 Clinical NLP Shared Tasks [Uzuner et al., 2011]. The
experiments showed that despite being a generic component that was not specifically
developed for i2b2 data and tasks, the NRC ML-based relation extractor achieves
competitive accuracy results. The enhancements of this component and the evaluation
experiment are described in chapter 3 of this document.

The conclusion (chapter 4) summarizes the current status of the IE components and
briefly describes future work.

WP3 D3.5, Version 1.0

EURECA

ICT-2011-288048

Page 8 of 38

© EURECA <Public>

2 Concept identifier: the new version

2.1 Background and motivations

The initial prototype of the Concept Identifier (CI), described in D3.1 [Aït-Mokhtar et al.,
2013], was built from UMLS terminologies that were of category 01 and of interest to
EURECA partners: LOINC, NCI and ICD9CM. The terms from those terminologies were
selected, cleaned, enriched with some variations, and finally compiled into finite-state
lexical transducers (cf. D3.1). We could integrate these terminologies in the distributed
tool because UMLS “category 0” terminologies do not entail any licensing obligations in
redistributing derivative work, namely the compiled term database required by the CI
engine for term identification. Therefore, term occurrences returned by the CI did not
provide SNOMED-CT codes, or codes from other terminologies than the three mentioned
above. It did provide UMLS codes (Concept Unique Identifiers, CUIs), from which it is
possible to get the corresponding SNOMED-CT codes through the mappings available in
the UMLS metathesaurus.

However, accessing terminology codes through UMLS mappings was not a
straightforward solution for the users: it implied the implementation of an interface for
accessing the UMLS mappings, or relying on an online annotation and mapping service
like BioPortal to get SNOMED-CT and other terminologies codes. Besides, some of the
EURECA use cases involving partners like IJB or UdS have to deal with non-English
termsets that are not integrated to UMLS, but still require efficient identification of those
term occurrences in texts. Therefore, one of the most important features that we had to
add to the concept identifier is terminological adaptability, i.e. allowing users with no
expertise in NLP or finite-state calculus to adapt the CI by providing terms of licensed
terminologies (e.g. SNOMED-CT) or their own term sets. Adding such feature implied two
major changes in the initial CI prototype:

1. Developing and integrating a generic term compiler that would perform
automatically the basic operations needed to transform lists of terms provided by
the user into a compiled version for efficient concept identification and lookup.
The input term set can be any subset from the dozens of UMLS integrated
terminologies, or non-UMLS terminologies, or even user’s homemade
terminologies.

2. Separating the compiled medical terms from the general language lexicon, so that
the former can be changed and modified automatically by compiling user’s term
sets without any impact on the linguistic analyser. Integrating the terms into the
general language lexicon in the form of lexical finite-state transducers, as it was
done in the initial CI prototype, speeds up the identification process, but the
integration requires fine-grained linguistic-based decisions that are difficult to fully
automate.

The ability to recognize the internal structure of compound terms, i.e. identifying
subterms of complex terms, is another motivation for changing the initial CI method. A
subterm, or nested term, is “an individual term that may occur within longer terms as well
as independently” [Nenadić et al., 2005]. In the initial prototype, only the longest-

1 UMLS terminologies of “category 0” are those subject to the general terms of the License for Use
of the UMLS® Metathesaurus®, with no additional licensing restrictions.

WP3 D3.5, Version 1.0

EURECA

ICT-2011-288048

Page 9 of 38

© EURECA <Public>

matching terms, from left to right in the input text, were returned: e.g. “kidney cancer” is
identified but not its internal components “kidney” and “cancer”. Identifying the internal
components is a first and mandatory step towards the identification of non-listed syntactic
variants, like “cancer of the kidney”, through syntax-based transformation patterns (Kang
et al., 2013). Similarly, in “stage I and II”, only “stage I” is returned as a medical term,
while the identification of the internal term “stage” can allow for future enhancement in
order to recognize coordinated (discontinuous) terms (“stage II” in this case) through
local syntactic patterns.

The new CI method and components are described in the next sections. Section 2.2
provides an overview of the new approach. In section 2.3, we describe the terminology
compiler (TC) that we developed to allow for the customization of the concept identifier
with user-selected terminologies. Section 2.4 describes the new method for the
identification of terms in texts. Finally, we explain in section 2.5 how to use this new
version of the concept identifier, including how to customize it by integrating other UMLS
or non-UMLS terminologies.

2.2 Overview of the new version

Like in the first prototype, the new concept identifier comes with a default term database
that includes NCI, LOINC and ICD9CM terms and codes, in addition to the UMLS
concept unique identifiers (CUI) and semantic types. However, the user can now change
the term DB of the concept identifier without any NLP expertise: any terminology from
UMLS or even user’s own terminology can be defined as the set of terms that the
concept identifier will recognize in texts. For that purpose, the new version includes a
terminology compiler that can compile and store term sets provided by the user for the
concept identifier. Any terminology included in UMLS raw data files downloaded from the
National Library of Medicine (NLM) website can be selected and used. Other
terminologies, including user’s own term sets, can also be used as far as they’re put in
the tabbed format (tsv) required by the term compiler. The compiler is described in
section 2.3 below.
A new method for term identification has been implemented that separates term
information from general language lexicon. As explained in the previous section, the main
motivation is that such separation makes it possible for the user to change the term DB
without NLP expertise. It also makes possible the identification of subterms, i.e. terms
contained in other (longer) terms, allowing for the identification of internal structure of
compound terms, a prerequisite if we plan in future versions to address complex term
variation (e.g. derivational term variations like in “rectal cancer” vs. “rectum cancer”, or
discontinuity due to coordination). The new term identification method is described in
section 2.4.

2.3 Terminology compiler

2.3.1 Overview
The terminology compiler takes as input source terminologies selected by the user, either
from UMLS data, or from user-defined term lists (see Figure 1 below), and compiles them
into a terminology DB that the concept identifier can use for term recognition in free texts.
The compiler comes with a core DB containing the core UMLS concepts identifiers and
semantic types. When UMLS terminologies are selected for compilation, the compiled

WP3 D3.5, Version 1.0

EURECA

ICT-2011-288048

Page 10 of 38

© EURECA <Public>

terms are linked to the UMLS semantic types thanks to the initial core DB. Similarly, if
users provide their own terminologies with UMLS CUIs assigned to the terms (see the
example of a French terminology in Figure 1), the compiler links them to the UMLS
semantic type hierarchy.

The resulting compiled term DB actually contains three components:

1. The UMLS core DB, which is included to provide the mappings to the semantic
types and also the mappings between codes of compiled terminologies, through
the UMLS CUIs.

2. A terminology DB, which is a key-value store that maps the source terms to their
source terminology codes, and/or to the UMLS CUIs, or to any attribute-value
elements provided in the user’s source terminology.

3. A finite-state transducer (FST) of the terms with their semantic types, used for fast
and efficient in-memory term lookup (including approximate term matching) during
the NLP analysis and the concept identification process.

Figure 1: Term compilation of UMLS or user's terminologies

WP3 D3.5, Version 1.0

EURECA

ICT-2011-288048

Page 11 of 38

© EURECA <Public>

2.3.2 Term finite-state transducer
A finite-state transducer (FST) is a formal device that encodes pairs of related symbol
strings: an input string and an output string. Hence, an FST encodes two related
languages built over a given alphabet of symbols: the set of all input strings and the set
of all output strings to which the input strings are mapped [Beesley & Karttunen, 2003].
When provided with a string belonging to one of the input strings, the FST recognizes it
and produces all the output strings to which it is mapped.

An FST has a set of states, among them an initial state and possibly one or more final
states, and a set of directed transitions between states. A transition is labelled with a pair
of symbols. Let’s assume that the right symbol refers to the input level, and the left to the
output level. An FST accepts an input string s if there is at least one sequence of
transitions from the FST initial state to a final state, labelled such that the concatenation
of all the right-side symbols of these transitions is equal to the input string s. If so, the
FST produces all the possible output strings, by concatenating the left-side symbols of all
the possible transition sequences. In practice, finite-state transducers are convenient
data structures for storing large sets of pairs of strings, like dictionaries of word forms or
terms along with their properties, e.g. lemmas or base forms, part-of-speech tags,
semantic features, etc., offering both compactness and fast string lookups.

The term FST that our terminology compiler builds from the terminologies encodes the
mappings between typographically normalized term forms (the input level) and their
original forms plus UMLS semantic type(s) (the output level). The normalized forms are,
basically, lower-case forms of terms. An example of such string pair could be, for
instance, “cancer” at the input level, and “Cancer+Neoplastic_Process”, at the output
level.

Figure 2 shows a simple example of a small FST built for a small set of 9 terms. By
convention, transitions labels with a single symbol (instead of a pair) are actually pairs of
identical symbols on both sides: for instance, the transition between initial state s0 and
state s2 is labelled with c, actually representing the pair <c:c>, meaning that taking this
transition requires reading character c from the input string, and produces the same
character c as output. Hence, if the input text string is “cancers”, the lookup process
starts with initial state s0, and goes through states s2, s6, s10, s15, s20, s25 and fs29,
matching the input characters of “cancers” with the right side symbols of the transition
labels, and outputting “cancer+Neoplastic_Process” from the left side of the transition
labels. This FST example shows why FSTs offer relative compactness, when compared
to other structures like B-Trees: when the FST is minimized, not only similar prefixes of
strings share the same paths, but also their common suffixes are encoded in shared
ending paths. For instance, the terms “invasive” and “invasive cancer” share the suffix
path “i-n-v-a-s-i-v-e” from state s0 to state s34, while the terms “breast cancer”, “kidney
cancer”, “invasive cancer” and “infiltrating cancer” share the same suffix path “SP-c-a-n-
c-e-r-<+Neoplastic_Process:0>”, from state s34 to final state fs29.

The FST shown in Figure 2 is a small and simplified example. In practice, the compiled
term FSTs are of course much bigger. As an example, when we consider all the terms of
SNOMED-CT, NCI, LOINC and ICD9CM together, we obtain about 903K typographically

WP3 D3.5, Version 1.0

EURECA

ICT-2011-288048

Page 12 of 38

© EURECA <Public>

normalized terms2 with an average length of 25.95 characters per term, and when
compiled and encoded along with their semantic types, we obtain an FST that has
3,115,008 states and 3,827,460 transitions, stored in about 93.61 MB in memory, which
go down to 6.92 MB when saved on disk.

2 The original set of non-normalized terms from these 4 terminologies, including typographical
variations, is even larger.

WP3 D3.5, Version 1.0

EURECA

ICT-2011-288048

Page 13 of 38

© EURECA <Public>

Figure 2: An example of a finite-state transducer of compiled terms

WP3 D3.5, Version 1.0

EURECA

ICT-2011-288048

Page 14 of 38

© EURECA <Public>

2.4 Term identification method

2.4.1 Overview
Figure 3 depicts the new approach for the identification of medical concepts in texts.
First, the input text is tokenized and each token is assigned one or several part-of-speech
(POS) tags. Unknown tokens, i.e. tokens not listed in the general language lexicon
because they are new or too domain-specific or subject to spelling errors, are assigned
possible POS tags by a “guesser” algorithm, based on general patterns, including prefix
and suffix patterns. Ambiguous POS assignments are partially disambiguated with a POS
tagger.

Afterwards, the sequence of tagged tokens goes into a syntactic module that determines
which n-grams of tokens (i.e. subsequences of tokens of length n, with n=1,…,8 in the
current version) satisfy syntactic constraints required for term candidates. However, since
our approach to concept identification relies heavily on term lists, we don’t need at this
stage to define exact syntactic patterns for term candidates [Spasić et al., 2013]: rather,
we apply some loose syntactic constraints to eliminate certain syntactic configurations.
For instance, subsequence of tokens ending with determiners cannot be term candidates
and are discarded at this stage. The resulting initial set of term candidates goes into the
normalization module which produces an extended set of term candidates using
typographical normalization, morphological/inflectional normalization and
orthographical/spelling normalization. These three types of normalization are explained
below in subsections 2.4.2, 2.4.3 and 2.4.4 respectively. Spelling error normalization is
also performed with maximum edit distance of 1 in the current version (see 2.4.5).

Each element of the resulting extended set of term candidates is looked-up in the finite-
state transducer (FST) of terms produced by the term compiler described in section 2.3
above. It is important to note that this extended set of term candidates can be quite large
when all possible normalization types are combined with all possible n-gram lengths: this
can yield several thousands of term candidates. However, two features of the term
lookup process help circumvent potential efficiency issues in the term lookup process.

First, we organized the term lookup process as a sequence of prioritized strategies for
each initial term candidate:

1. Simple lookup (of the initial non-normalized term form)
2. Typographical normalization + lookup
3. Morphological normalization + lookup
4. Typographical + Morphological normalization + lookup
5. Orthographical normalization + lookup
6. Typographical + orthographical normalization + lookup
7. Spelling error normalization (max edit distance = 1) performed with each of the

previous strategies (from strategy 1 to 6) sequentially.

As soon as a term is identified in one of these strategies, the process is stopped and no
further normalizations are performed. As the first three strategies cover the vast majority
of term occurrences in texts, situations with a large number of normalized form
candidates are rare. In the examples of Figure 3, none of the many possible normalized
forms of “cancers” will be tried, since the initial form “cancers” is listed in the compiled
term list.

WP3 D3.5, Version 1.0

EURECA

ICT-2011-288048

Page 15 of 38

© EURECA <Public>

Another feature of the identification process that prevents efficiency issues is that the
normalizing finite-state transductions and the term lookup transduction are intertwined,
even though in Figure 3 they are separated for clarification purposes: the normalizing
transducers and the term transducer are actually traversed in parallel. At each character
position in the initial term, whenever the normalizing transducers produce characters,
they are immediately tested at the current state of the term transducer and only those
normalized characters leading to a successful arc transition are kept. This means that the
content of the compiled listed terms guides the normalization process and usually prunes
irrelevant alternatives early in the process. Among all the theoretically possible
normalized forms of a term, only a few are tried entirely, and many of them are rejected
early, after only a couple of their first characters are processed.

After the term lookup step, we obtain a set of identified terms in their initial forms, i.e. as
they occur in the input text, along with the terminology forms, that is, the original forms
found in the source terminologies. Compound terms, i.e. terms containing other terms,
are then structured into embedding levels: the first level contains the longest terms, from
left to right, identified in the input text, and the other levels contain the embedded
subterms.

The identification of nested terms and the internal structure of compound terms will allow
for future improvements of the concept identifier by introducing syntactic-based
normalization means for complex term variations like coordinated terms, which improves
over dictionary-based identification [Kang et al., 2013].

WP3 D3.5, Version 1.0

EURECA

ICT-2011-288048

Page 16 of 38

© EURECA <Public>

Figure 3: General approach in the new concept identifier

WP3 D3.5, Version 1.0

EURECA

ICT-2011-288048

Page 17 of 38

© EURECA <Public>

2.4.2 Typographical normalization
The term forms stored in the input side of the term FST (see section 2.3.2) are lower-
cased forms of the original terms, except for acronyms. In free texts however, terms can
occur entirely or partially in uppercase. Therefore the typographical normalization
transducer takes as input strings of characters partially or entirely in uppercase and
produces lower-cased forms, so that they can be looked up in the term FST if the simple
lookup strategy without typographical normalization does not succeed.
This normalizing FST is obtained from the union of regular expressions (regex) that maps
input strings to their lowercase forms. As an example, let’s consider the normalization of
all-uppercase forms. We first define a regex with pairs of symbols that map any
uppercase letter to its lowercase form, thanks to the following disjunctive expression (by
convention, the right symbol is the input level, and the left is the output level):

define UPPTOLOW ǁ Áƙ! ƴ Âƙ" ƴ Ãƙ# ƴ ƛ ƴ Úƙ: ǂƘ

So now UPPTOLOW is a finite-state transduction that requires an input uppercase letter
and turns it to its lowercase equivalent. We also define digits and separators, which can
be part of compound terms, but without any mapping because these characters are not
affected by lowercasing:

define NUM ǁ ʣ ƴ ʦ ƴ ʧ ƴ ƛ ƴ ʮ ǂ;
define SEP ǁ Ƨ Ƨ ƴ ƧƗƨ ƴ Ƨ-Ƨ ƴ ƛ ǂƘ

We want to transform all-uppercase term candidates to their lowercase forms, but only if
their length is at least 5 (4 or less uppercase letters are generally acronyms that we
prefer to keep in uppercase, for better readability). The terms may be compounds or
contain numbers. The ALLTOLOW regex below does the job:

define ALLTOLOW [UPP2LOW]^5 [UPP2LOW | SEP | NUM]*

As defined above, UPPTOLOW requires an uppercase letter and maps it to lowercase.

Hence, [UPPTOLOW] ^5 ensures in the global regex that there is at least 5 such uppercase

letters in the input string.

2.4.3 Morphological (inflectional) normalization
By “morphological normalization”, we refer to the transformation of non-listed
morphologically inflected forms to their listed base forms. Therefore, derivational
variations, i.e. morphological transformations yielding a change in part-of-speech
category (e.g. Noun-to-adjective variations like “abdomen” and “abdominal”) are not yet
handled.
Similarly to typographical normalization, we implemented morphological normalization as
regular expressions the union of which is an FST defining mappings between the
inflected forms and their base forms. For English medical terms, morphological inflection
is mainly due to plural. We considered the plural inflection rules listed in Table 1, which
cover the vast majority of plural inflections. As an example of how the rules are
implemented, let’s consider the third inflection rule, mapping any base form ending with a
consonant and the letter y to its plural form the y transforms to ies. We first define the set
of consonants:

define CONS ǁ Â ƴ Ã ƴ Ä ƴ ƛ ƴ Ú ǂƘ

WP3 D3.5, Version 1.0

EURECA

ICT-2011-288048

Page 18 of 38

© EURECA <Public>

Then we define the inflectional mapping ENDCONSY as:

define ENDCONSY [?+ CONS y:i 0:e 0:s];

Symbol “?” stands for any character, and “0” denotes the empty string. Again, note that

by convention the input level is at the right element of the symbol pairs and the output
level on the left side. Therefore, inflection rule ENDCONSY accepts any form ending with a

consonant and “ies”, and transforms the “ies” ending into “y”. The defined mapping is
therefore from the plural form (not listed in the original term set) to the singular form.

Inflection rule Examples

Plural with –s cancers of the kidney Ą cancer of the kidney
Invasive cancers Ą Invasive cancer
Fluorescent immunoassays -> Fluorescent immunoassay

Plural with –ses
Endings: -sis

Dysgeneses Ą Dysgenesis

Plural with –es
Endings: –ch, -sh, -ss,
-x, -s

Hetastarches Ą Hetastarch
Petechial rashes Ą Petechial rash
Bartholin's abscesses Ą Bartholin's abscess
Abdominal reflexes Ą Abdominal reflex
Calovo viruses Ą Calovo virus

Plural with –ies
Ending: consonant-y

Acquired Immune Deficiencies Ą Acquired Immune Deficiency

Table 1: Main plural inflection rules of English terms

Morphological normalization is independent from specific terminologies, but obviously
depends on the language. We have also implemented general inflection rules for French
to cover most of plural inflections and allow for the concept identifier to identify inflected
forms in French texts that are not listed in provided term sets (e.g. morphological
inflections of the form -al/-aux, -eau/-eaux, -/-s, etc.)

We found that in standard terminologies, many terms do not have their plural forms
listed, although we haven’t done any precise quantitative study. The plural examples
listed in Table 1 are not listed in standard terminologies used by BioPortal and therefore,
as of July 2014, the BioPortal text annotator3 cannot identify those plural terms, despite
being able to identify their equivalents in singular. In their experiments, [Nenadić et al.,
2004] showed that the incorporation of inflectional normalization improved recall by 25%.
However, the real impact of handling morphological inflection obviously depends on the
initial coverage of integrated vocabularies, and on how much those non-listed plural
forms are frequent in the input documents.

2.4.4 Orthographical normalization
By orthographical normalization we refer to the normalization of correct orthographical
term variants (the handling of spelling errors is described in next subsection). Some of

3 http://bioportal.bioontology.org/annotator: last accessed: 26/07/2014.

http://bioportal.bioontology.org/annotator

WP3 D3.5, Version 1.0

EURECA

ICT-2011-288048

Page 19 of 38

© EURECA <Public>

these variations are due to spelling difference between American and British English.
Table 2 shows the implemented orthographic equivalences in the current version.

Orthographic variation Examples

ae, æ, oe, œ = e haemorrhage / hemorrhage
oestrogen / estrogen

our = or abnormal colour / abnormal color

is = iz decolourising carbon / decolorizing carbon

ph = f sulphafurazole / sulfafurazole

tion = sion distention / distension

Table 2: Orthographic normalization rules

Similarly to morphological normalization, orthographic equivalences are implemented as
a finite-state transducer obtained from the union of regular expressions that define each
of the equivalences.

2.4.5 Spelling error normalization
When a term candidate is not found in the term FST even after combining the three
normalization types defined in the preceding subsections, the concept identifier attempts
to recognize it as a misspelled term. We handle spelling errors with the notion of
Levenshtein edit distance between two strings, which can be defined as the number of
single-character edit operations required to transform one string into the other. An edit
operation can be an insertion, a deletion or a substitution of one character. In order to
avoid false positives, we initially considered a maximum edit distance of 1 with a
minimal term candidate size of 5 characters, based on the commonly accepted
estimation from [Damerau, 1964] that an edit distance of 1 covers about 80% of
misspellings in texts, and on the fact that most misspelled words are longer than 4
characters: a quick analysis of 366 most often misspelled English words from the Moby
project4 shows that 96% of them have a length of at least 5 characters. In any case,
these thresholds might be changed depending on experimental results in the use cases
where the concept identifier is used, and in particular, on the frequency of misspellings in
processed documents.

When dealing with hundreds of thousands of listed terms, the main issue with
approximate string matching based on edit distance is efficiency. Obviously, one cannot
opt for brute-force sequential comparison of the input term candidate with all the terms in
the term FST in order to find similar terms with a maximum edit distance of 1.
Fortunately, efficient approximate string matching techniques have been developed
based on finite-state automata (FSA). [Shulz et al., 2002] defined the notion of
Levenshtein automaton of degree k for an input string s as an FSA that accepts all
possible strings s’ such that the Levenshtein edit distance between s and s’ is equal to or
less than k. They proposed a method to automatically build a deterministic Levenshtein
automaton of degree k for any input (misspelled) word w, and therefore modeled the
problem of approximate matching of input word w within a (very large) dictionary as the
online intersection of the Levenshtein automaton for w with the dictionary finite-state

4 http://en.wikipedia.org/wiki/Moby_Project: last accessed 28/07/2014

http://en.wikipedia.org/wiki/Moby_Project

WP3 D3.5, Version 1.0

EURECA

ICT-2011-288048

Page 20 of 38

© EURECA <Public>

automaton, assuming all the dictionary words are pre-compiled and stored in an FSA.
[Mitankin, 2005], and more recently [Mitankin et al., 2011] generalized the idea to the
notion of universal neighborhood automata, abstracting from the input strings and
covering a variety of string distance types.

We use the same method for spelling errors except that we combine the edit distance
with the six lookup strategies listed in section 2.4.1. This means that in practice, the
Levenshtein automaton is not intersected with the term FST only (first strategy), but it is
also intersected with the composition (cascade) of the normalizing transducers and the
term FST used in the other strategies. This allows for the recognition of misspelled and
non-listed uppercased and/or inflected terms, e.g. “Petechal Rashes” will be identified as
the term “Petechial rash”, even though strictly speaking the edit distance between these
two strings is greater than 1.

Spelling error normalization is obviously terminology-dependent, but it is language-
independent in the sense that the same algorithm and parameters are used for English
and French concept identification.

2.5 Using the new concept identifier

The new concept identifier (current version is 1.1.2) is delivered as a zip package as
usual. It includes the main java program XMedlan.jar , the NLP resources and the

default term database. The NLP resources now include linguistic resources for French
(morphological dictionary, part-of-speech tagger and syntactic dependency parser) used
for the identification of medical concepts in French free-texts.

The default term database is for English terms and includes NCI, LOINC and ICD9-CM
vocabularies. It is possible to customize the concept identifier for using other
terminologies with the following steps:

1. Getting the terminologies from UMLS (e.g. SNOMED-CT) or providing user’s own
terminology.

2. Compiling them (automatically) to create term databases (section 2.5.1), usable
by the concept identifier. We give an example showing how to compile SNOMED-
CT (section 2.5.1.2). We also explain how to compile any terminology that is not
integrated in UMLS, e.g. user’s homemade list of terms (section 2.5.2).

3. Once a terminology is compiled into a new term DB, it can be used with the
concept identifier to identify terms in texts (section 0).

2.5.1 Customizing with UMLS terminologies
In order to customize the concept identifier with UMLS-mapped terminologies, e.g. using
SNOMED-CT instead of the default provided terminologies, a user can download UMLS
data and compile them with the term compiler of the CI. This will create a new term DB
(distinct from the default term DB that is delivered with the CI). Once the new term DB is
created, you can use it to identify concepts in texts by running XMedlan concept
identification with the pathname of the new term DB as a parameter.

WP3 D3.5, Version 1.0

EURECA

ICT-2011-288048

Page 21 of 38

© EURECA <Public>

2.5.1.1 Downloading UMLS data

Please refer to Appendix A for the detailed procedure (including screenshots) to follow in
order to download UMLS core data and terminologies. In the following subsections, we
assume that <UMLS_FOLDER> refers to the root directory where the downloaded UMLS

data is stored.

2.5.1.2 Selecting and compiling UMLS terminologies for the concept identifier

In order to compile a specific set of UMLS terminologies, the user launches the following
command:

java - jar XMedlan.jar - tc - umls <UMLS_FOLDER> - terminologies
<IDENTIFIERS> - dest <DESTINATION_FOLDER>

where :

¶ - tc is the option that launches the terminology compilation

¶ <UMLS_FOLDER> is the root folder of the downloaded UMLS data.

¶ <IDENTIFIERS> is a sequence of comma-separated identifiers of UMLS

terminologies

¶ <DESTINATION_FOLDER> is the (new) folder where the new terminology DB will be

stored

The terminology identifiers are the terminology acronyms used in the list of all available
UMLS terminologies, accessible at:
http://www.nlm.nih.gov/research/umls/sourcereleasedocs/index.html (last accessed:
30/07/2014)

For example, SNOMED-CT identifier is SNOMEDCT_US, and LOINC identifier is LNC.

Example
Let’s assume that we want the concept identifier to recognize terms from SNOMED-CT
and LOINC, so we want to compile and create a new term DB containing SNOMED-CT
and LOINC terms. Let’s assume c:/Data/UMLS is the root folder of the downloaded

UMLS data, and that c:/Users/sam/MyTermDB is the new folder where we want to store

the new term DB. The following command will produce the new term DB:

java - jar XMedlan.jar Ƶtc - umls "c:/Data/UMLS" - terminologies
"SNOMEDCT_US,LNC" - dest "C:/users/sam/MyTermDB"

Please be aware that for large terminologies, the compilation process may take several
minutes on a normal desktop: about 15-25 minutes for NCI, LOINC, SNOMED-CT and
ICD9-CM together.

Once the new term DB is created, it can be used easily with the CI, as explained in
section 0.

2.5.2 Customizing with non-UMLS terminologies
It is also possible to customize the CI with other terminologies than those available
through UMLS. In this case however, the user has to prepare the list of terms in a tsv,

http://www.nlm.nih.gov/research/umls/sourcereleasedocs/index.html

WP3 D3.5, Version 1.0

EURECA

ICT-2011-288048

Page 22 of 38

© EURECA <Public>

UTF8 encoded plain text file, where each line contains a term form and possibly a list of
tab-separated attribute-value pairs for that term. The general line format is:

<term_form> ATTR1:VAL1 ATTR2:VAL2ƛƚƚ ATTRn:VALn

Where <term_form> is the term string (possibly containing spaces, but not tabs), and

ATTRi :VALi are attribute-value pairs encoding any information that the user wants to get

when the concept identifier recognizes occurrences of the term in texts. Although not
required, it is suitable that one of these attributes be a UMLS concept unique identifier
(CUI) when possible: this would allow the concept identifier to map the term occurrences
to UMLS semantic types. As an example, the following line defines the French term
“pédoncule cérébral” with a mapping to UMLS concept C0007793:

pédoncule cérébral CUI:C0007793 MYID:36592

A term set in the format above can be compiled with the following command:

java - jar XMedlan.jar Ƶtc - tsfile "c:/Data/myterms.tsv " - dest
"C:/users/sam/MyTermDB 2"

where c:/Data/myterms.tsv is the pathname to the terminology file and

C:/users/sam/MyTermDB2 is the pathname to the new folder that will contain the new

term DB.

2.5.3 Running the concept identifier with a specific term DB
In order to use a specific term DB, obtained from the compilation of term sets as
explained above, the concept identifier can be run with the following command-line:

Java Ƶjar XMedlan.jar - ci - termdb <TERMDB_FOLDER> - doc document.txt

where <TERMDB_FOLDER> is the pathname of the term DB folder that will be used for

term identification, and document.txt is the pathname to the text document to process.

You can add option Ƶsubterms if you want to get not only the longest identified terms,

but also the nested terms.

From the Java API, in order to process a text or collection of texts, you need to create a
ConceptIdentifier object by providing the pathname to the compiled term DB, e.g.:

ConceptIdentifier cIdentifier = new ConceptIdentifier ("C:/users/sam/MyTermDB");

If no term DB pathname is provided to the ConceptIdentifier constructor, it will use the
default term DB delivered with the tool, which contains only NCI, LOINC and ICD9-CM.

By default, the concept identifier returns only the longest terms, not the nested terms.
You can change this by setting the subterm identification flag to true with:

cIdentifier.setSubtermsIdentification(true);

 You can then call method find Terms(String pathname) of the ConceptIdentifier

class, passing the pathname of the text file to process, or the pathname of the directory

WP3 D3.5, Version 1.0

EURECA

ICT-2011-288048

Page 23 of 38

© EURECA <Public>

where the collection of text files is. In the latter case, the tool will go recursively through
all the subdirectories:

List<Term > terms = cIdentifier .findTerms(text_pathname);

The findTerms() method returns a list of term occurrences found in the input text(s).

Each Term object has some information that can be accessed with the following

methods:

class Term

String getTextPathname() Returns a string representing the
absolute pathname of the input text file
where the term occurrence has been
found

int getStart() Returns an integer representing the start
offset, i.e. index of the first character of
this term occurrence in the input text

int getLength() Returns the length, in terms of
characters, of this term occurrence

String getForm() Returns the string form of this term
occurrence

String getLemma() Returns a lemmatized (normalized) form
of this term occurrence

List<TermSense > getTermSense() Returns a list of possible senses found in
the term DB for this term occurrence

A term occurrence can be ambiguous and have more than one sense. Each possible
sense is represented with a TermSense object that has the following methods:

class TermSense

String get CUI() Returns a string representing the UMLS
concept unique identifier (CUI) assigned to
the term sense when available, null otherwise

String [] get Types() Returns the UMLS semantic types assigned
to the term sense, if available

String get AttrValue (String attr) Returns the string value of the attribute “attr”
for this term sense. If the term DB being used
contains UMLS terminologies, then you can
access to the terminology codes by using the
terminology identifier as an attribute. E.g.
getAttrValue(“SNOMEDCT_US”) will return
the SNOMED-CT codes for that term sense.
See section 2.5.1.2 for more information
about terminology identifiers.
Additionally, “attr” can be any attribute
provided by the user when compiling tsv-
formatted terminologies (see section 2.5.2).

WP3 D3.5, Version 1.0

EURECA

ICT-2011-288048

Page 24 of 38

© EURECA <Public>

3 Extraction of relations and attributes:
enhancements and experiments with the ML
component

3.1 Enhancements to the machine learning based component

Whereas the NRC ML component was designed to determine the relationship type
between a pair of concepts within the same sentence, it allows for two additional types of
usage. The three types are:

(1) labelling an entire text segment with a class label, for instance, this sentence
describes a patient who currently has fever;

(2) labelling a concept within a text segment with the applicable assertion type
(hedging). For instance, the concept “pneumonia” is confirmed / ruled out /
hypothesized / etc;

(3) labelling a pair of concepts within a text segment with their relation type, for
instance “a causes b”, “a is a treatment for b”, “ a happened after b”, etc.

The type of usage is implicitly specified as training and testing data is formatted: if no
concept is provided, use-type 1 is assumed, if one concept is provided, use-type 2 is
assumed, and if two concepts are provided, use-type 3 is assumed. The usage
instructions as provided in the software give further details.

Technical testing of the ML based component revealed speed performance issues, which
became more pronounced as data set sizes increased. Two key improvements were
implemented:

(1) several inefficiencies were corrected in the Java code that transforms free text into
feature vectors. In most programming languages, and certainly in Java, there are multiple
constructs available to complete the same operation. Since in this component, some
operations are repeated thousands of times, a small speed increase per operation can
accumulate in a substantial overall speed improvement. Several of such improvements
were implemented in the code, notably at the point where strings are concatenated, and
where arrays are sorted.

(2) the external classifier component was switched out for a faster algorithm. Originally, a
multi-class Support Vector Machine (SVM) implementation was used: LibSVM. This is
known to be not the fastest implementation of SVM, with notably SVM-Struct being
dramatically faster. However, LibSVM had been chosen since it can be used under a
much more permissive license, and since its native Java implementation integrates better
with the rest of our code. Its slow speed, especially during the model training phase and
even when using the linear kernel, proved to be a true bottleneck. During discussions
with EURECA partners, it was proposed to try LibLinear [Fan et al., 2008], a classifier
based on logistic regression algorithms, as a faster alternative to accomplish the same
task. This exchange proved to be successful, as it did give a dramatic speed increase
without harming the functional performance (see the experimental report later in this
chapter).

A further shortcoming in the implementation was detected but as yet not fully solved. The
program currently uses a bit too much memory. A more sparing use of memory should
allow the system to run more efficiently on systems that do not necessarily have large
RAM capacity. Currently, some intermediate feature representations of input text are kept

WP3 D3.5, Version 1.0

EURECA

ICT-2011-288048

Page 25 of 38

© EURECA <Public>

in memory, whereas those could safely be discarded once the final feature
representation is calculated (freeing up the memory). Inefficient memory use can
occasionally lead to overload errors (program crashes), but more usually to a drastic
performance slow-down as virtual memory is created and consulted on a permanent
storage drive (hard drive or solid state drive).

3.2 Experiment

3.2.1 Introduction
Since in-house test data are not yet available (i.e. we are referring to manually annotated
real free texts serving as a reference for quantitative evaluation, from EURECA use
cases dealing with free texts), the NRC ML component was evaluated using a
benchmark test and the textual data that is associated with that test. This test was
designed, and the data collected and annotated, for one of the editions of the i2b2
Clinical NLP Shared Tasks. In such tasks, the same problem is solved by participating
teams, in such a way that results and methods can be fully compared afterwards. As
participants to this edition of the i2b2 shared task, the NRC researchers had been given
access to the data; follow-up experimentation was permitted by the data use agreement
and covered by the original ERB approval.

The experiment, following the protocol below, was run twice: first on the NRC ML
component as was delivered under D3.2, and then on the component after
enhancements.

3.2.2 Method

3.2.2.1 Task description

The task that is under consideration here is a replication from the 2010 i2b2 NLP
challenge [Uzuner et al., 2011], specifically the ‘Assertion’ subtask (second subtask) in
that challenge. Given ‘clinical problem’-type concepts in their context (sentence /
paragraph / report), the task is to assert whether each concept is present, absent,
possible, hypothetical, conditional, or associated with someone else. This task maps
seamlessly with the second usage type of the NRC ML component. The six classes are
defined in full in [Uzuner et al., 2011]. To summarize, their meanings are as follows:

¶ present: patient experiences the problem

¶ absent: physician states that patient does not experience the problem (e.g., “no
fever”)

¶ possible: physician questions a problem, or states it as a possibility (e.g., “test for
HIV”, or “pneumonia?”)

¶ hypothetical: a problem might develop later on (e.g., “see me if fever develops”)

¶ conditional: a problem only occurs in certain circumstances (e.g., “short of breath
when walking stairs”)

¶ associated with someone else: usually part of family history (e.g., “mother had
breast cancer”

WP3 D3.5, Version 1.0

EURECA

ICT-2011-288048

Page 26 of 38

© EURECA <Public>

3.2.2.2 Data description

Data for this experiment had been collected by the organizers for the 2010 i2b2 NLP
challenge [Uzuner et al., 2011] and consisted of discharge summaries and progress
notes from three clinics in the USA. All text was in English. Concept annotations were
provided as character offsets in the text for all clinical concepts, along with their type
(‘problem’, ‘test’, and ‘treatment’). The training set contained 11,968 ‘problem’ concepts
(and therefore training instances) from 349 documents; the test set contained 18,550
‘problem’ concepts from 477 documents. Data was re-formatted to adhere to the input
requirements of the NRC ML component.

3.2.2.3 Study question

Purpose of the experiment is to assess how the NRC ML component scores on this task,
both absolutely and compared to state-of-the-art systems, and to scan for potential
weaknesses.

3.2.3 Evaluation metrics
Primary metric is the micro-averaged F1-score. F1-score is the harmonic mean between
precision and recall. As this primary metric is vulnerable to overstating the performance
on a data set that is dominated by a majority class (which is the case here, to some
degree), the per-class F1-scores, precision, recall, and their macro-averages are
provided as secondary metrics. Finally, computation time is reported as the indicator for
computational efficiency between the two systems.

3.2.4 Results
Table 3 lists the results for the original system as a confusion matrix, and gives precision,
recall and F1-scores. The processing time using this system was approximately 75
minutes on a desktop computer (dual 4-core Xeon processor, 12 GB RAM).

Table 4 lists the results for the NRC ML component after system improvements.
Processing time shrank a full order of magnitude to 7 minutes 20 seconds on the same
computer. Even though the improvements were purely designed for better efficiency,
accuracy may have improved slightly and certainly showed no signs of degradation.

WP3 D3.5, Version 1.0

EURECA

ICT-2011-288048

Page 27 of 38

© EURECA <Public>

prediction

present absent possible

condit-
ional

hypo-
thetical

someone
else

tr
u

th

present 12685 192 89 11 42 6 13025

absent 353 3224 18 1 12 1 3609

possible 484 19 377 1 2 883

conditional 103 16 1 51 171

hypothetical 120 8 6 581 2 717

someone else 36 4 105 145

 13781 3463 491 64 637 114 18550

Precision 0.9205 0.9310 0.7678 0.7969 0.9121 0.9211 0.9177

Recall 0.9739 0.8933 0.4270 0.2982 0.8103 0.7241 0.9177

F1-score 0.9464 0.9118 0.5488 0.4340 0.8582 0.8108 0.9177

Table 3: Results for the original NRC ML component

prediction

present absent possible

condit-
ional

hypo-
thetical

someone
else

tr
u

th

present 12771 157 60 5 31 1 13025

absent 323 3265 15 6 3609

possible 502 27 351 3 883

conditional 119 8 1 42 1 171

hypothetical 102 12 9 593 1 717

someone else 39 6 100 145

 13856 3475 436 47 634 102 18550

Precision 0.9217 0.9396 0.8050 0.8936 0.9353 0.9804 0.9230

Recall 0.9805 0.9047 0.3975 0.2456 0.8271 0.6897 0.9230

F1-score 0.9502 0.9218 0.5322 0.3853 0.8779 0.8097 0.9230

Table 4: Results for the upgraded NRC ML component

WP3 D3.5, Version 1.0

EURECA

ICT-2011-288048

Page 28 of 38

© EURECA <Public>

3.2.5 Discussion
The results from the NRC ML component show that it performs quite well, possibly better
than initially expected. A multi-label classification task (6-way in this case) is inherently
harder than a binary one, since there is more than one way to get it wrong, and in
practice some of the classes tend to have very few examples which makes it harder to
get those right. Precision was high for all classes, exceeding 80% for all classes and 89%
for all-but-one. The dominance in the training set of the ‘present’ class caused the
classifier to gravitate its predictions to that majority class, suppressing the recall for the
minority classes. This can be countered by tweaking the classifier’s parameters, but in
the current experiment, parameters were kept at the default values.

The slight accuracy boost going from the original to the improved version of the NRC ML
component should not be considered conclusive, and could be attributed to noise or to
parameter setting variance. The original system fared a bit better on minority classes and
leaned less towards majority class predictions. This is reflected by the macro-averaged
F1-score (i.e., the average across the six per-class values), which was 75.2% for the
original system, and 74.6% for the improved system. Precision and recall were 87.5%
and 68.8% (original system), and 91.3% and 67.4% (improved system) respectively.

The experiment has also illustrated that training and application of models on moderately
large data sets is now computationally very feasible, whereas it was simply getting too
slow with the original system.

Since this data was originally compiled within the context of a benchmark competition,
the competition results can be considered the state of the art for this data. If the current
output had been submitted to the competition, it would have ranked 10th in the results
among two dozen participating teams [Uzuner et al., 2011]. The micro-averaged F1-
score of the top-scoring system in that competition [de Bruijn et al., 2011] was 0.9362, or
0.0132 higher than the result reported in Table 3.4.2. The on-diagonal and off-diagonal
counts in that table also compare well with the numbers reported in [de Bruijn et al.,
2011].

As mentioned, the NRC ML component scores competitively compared to systems
developed specifically for the competition. This is especially encouraging considering that
in contrast with i2b2 submitted systems (1) the NRC ML component does not include
syntactic resources, (2) does not include semantic resources, (3) was not specifically
designed for this task, (4) parameters were not optimized for this task, and (5) has a
relatively straightforward architecture (built around a single multi-class classifier).

3.2.6 Future experiments
The current experiment can be seen as a portal experiment. These overall results open
the door for further experimentation with in-house data. Such experiments are clearly
more expensive to conduct, and therefore riskier, than experiments that re-use existing
data. This risk has been considerably reduced by the current results. Follow-up
experiments with EURECA partner data will concentrate on aspects specific to the
EURECA environment and use cases, including that data will be offered in various
languages, might include variation in spelling and accentuation, and could contain
transcription errors or OCR errors.

WP3 D3.5, Version 1.0

EURECA

ICT-2011-288048

Page 29 of 38

© EURECA <Public>

The speed-up between the original and the improved NRC ML component allows for
rapid follow-up experimentation, notably with the purpose of parameter optimization.
Such tests should be done on the training collection only, using n-fold cross-validation, a
protocol that causes an approximate n-times longer experiment cycle. Once the
parameters are optimized, a repeat of the training set + test set experiment will be done.

Several further experiments using the same data and the same paradigm have also
become strong options for follow-up study. They are the following three:

(1) introduce the Xerox concept annotator into the process; assess the incremental value

of semantic annotation

(2) replicate the third subtask of the i2b2 2010 NLP challenge. This subtask concentrates
on establishing the relationship type between concept pairs, and maps neatly with the
EURECA relationship annotator task.

(3) possibly replicate the first subtask of the i2b2 2010 NLP challenge. This subtask
concentrates on extracting medical concepts from text. It maps only to a certain
extent to the EURECA concept extractor, with the i2b2 task requiring only a very
course-grained annotation, plus limiting extractions to the longest non-overlapping
concepts.

WP3 D3.5, Version 1.0

EURECA

ICT-2011-288048

Page 30 of 38

© EURECA <Public>

4 Conclusions and next steps

We have described the current intermediary status of the information extraction
components of EURECA. We first presented the new and enhanced version of the Xerox
concept identifier, which brings novel features to answer some of the users’ needs:
adaptability, better coverage through normalization and the identification of internal
structures of compound terms. Regarding adaptability, the user can now change the
source vocabularies for concept identification with no NLP expertise required, and
integrate to the concept identifier any terminology from the dozens of terminologies
available through UMLS, or any non-UMLS terminology like DrugBank, or even a non-
standard or homemade terminology. If the selected terminology is part of the UMLS
terminologies, or if it is provided with mappings to the UMLS concept unique identifiers,
the concept identifier will be able to assign UMLS semantic types and other terminology
codes to the term occurrences it identifies in free texts.

In order to offer this adaptability feature, we have separated the encoding of term forms
from general-language lexical resources, and have developed an automatic terminology
compiler that transforms raw UMLS or non-UMLS term sets, selected by the user, into a
terminology database (term DB) that allows for efficient storage and lookup of terms and
terminological information (semantic types, terminology codes and other general term
attributes).

We also designed and implemented an enhanced method for term identification that
works with such compiled term DBs and based on sequential strategies combining
typographical, morphological, orthographical and misspelling normalizations,
implemented mainly with compositions of finite-state transducers. These combinations
allow the new concept identifier to recognize non-listed variants of listed terms that, to
our best knowledge, the BioPortal annotator does not identify (non-listed inflected or
misspelled term forms). Additionally, the new concept identifier can now identify nested
terms or subterms, hence exposing the internal structure of compound terms. This can
be useful for instance in free-text query expansion, but most importantly it makes
possible future normalization enhancements, mainly the identification of non-listed
derivational or syntactic term variations, such as coordinated terms.

Besides the new concept identifier, we have also presented the work done on the NRC
machine-learning (ML) relation extraction component. Several inefficiencies were
corrected in the Java code, and most importantly, the SVM classifier (LibSVM) has been
replaced with a more efficient classifier (LibLinear) yielding a dramatic increase in the
computational efficiency of the ML component. We have also conducted an experiment
to evaluate this component. In the current absence of in-house test data (i.e. manually
annotated free texts serving as a reference for quantitative evaluation from EURECA use
cases dealing with free texts), we conducted an evaluation experiment using data from
one of the editions of the i2b2 Clinical NLP Shared Tasks. Evaluation results show that,
while the ML component is a generic system developed to cover a variety of EURECA
use cases and data types, it scores competitively compared to systems that were
developed specifically for the i2b2 competition. This experiment outcome is positive,
especially considering that the ML component does not include syntactic and semantic
resources where many i2b2 systems did.

Future planned activities regarding the IE components include further enhancements to
both the concept identifier and the relation extractor, and further instantiation of the

WP3 D3.5, Version 1.0

EURECA

ICT-2011-288048

Page 31 of 38

© EURECA <Public>

relation extractor in EURECA use cases or tools dealing with free texts. This includes
instantiating and improving the components on de-identified patient data, which has
become available through the CDP, in the context of the cancer registry reporting use
case. We will also instantiate, in the next three months, new relation types with the
linguistic-based component of the relation extractor, including temporal precedence
relations (before/after/during) and quantitative comparison relations (more than, less than
and equals to), which are relevant to the Guideline update use case.

WP3 D3.5, Version 1.0

EURECA

ICT-2011-288048

Page 32 of 38

© EURECA <Public>

5 References

[Aït-Mokhtar et al., 2013a] Aït-Mokhtar S., Hagège C. and Rupi P.: EURECA Deliverable
3.1: Initial prototype for concept extraction out of EHR free text, 2013.

[Aït-Mokhtar et al., 2013b] Aït-Mokhtar S., de Bruijn B., Hagège C. and Rupi P.: EURECA
Deliverable 3.2: Initial prototype for relation identification between concepts, 2013.

[Aramaki et al., 2008] Aramaki E., Imai T., Miyo K., Ohe K. (2008): Orthographic
Disambiguation Incorporating Transliterated Probability. In IJCNLP-2008, 48-55.

[Beesley & Karttunen, 2003] Beesley K. R., Karttunen L.: Finite State Morphology,
Stanford CA. CSLI Publications.

[Bodenreider, 2007] Bodenreider O.: The Unified Medical Language System (UMLS) and
the Semantic Web. http://www.nettab.org/2007/slides/Tutorial_Bodenreider.pdf.

[Damerau, 1964] Damerau, F.: A technique for computer detection and correction of
spelling errors. Communications of the ACM, 7(3):171–176, 1964.

[de Bruijn et al. 2011] de Bruijn B., Cherry C., Kiritchenko S., Martin J., and Zhu X.:
Machine-learned solutions for three stages of clinical information extraction: the state of
the art at i2b2 2010. J Am Med Inform Assoc. 2011 Sep-Oct;18(5):557-62. doi:
10.1136/amiajnl-2011-000150.

[Demner-Fushman et al., 2010] Demner-Fushman D., Mork J. G., Shooshan S. E., and
Aronson A. R.: UMLS content views appropriate for NLP processing of the biomedical
literature vs. clinical text. Journal of Biomedical Informatics 43(4), 587–594.

[Fan et al., 2008] Fan R.-E., Chang K.-W., Hsieh C.-J., Wang X.-R., and Lin C.-J..
LIBLINEAR: A library for large linear classification Journal of Machine Learning Research
9 (2008), 1871-1874.

[Hettne et al., 2010] Hettne K., van Mulligen E., Schuemie M., Schijvenaars B., and Kors
J.: Rewriting and suppressing UMLS terms for improved biomedical term identification.
Journal of Biomedical Semantics 1(1), 5.

[Krykwinski et al., 2012] Krykwinski C., Alonso Calvo R., Pérez Rey D., Marshall S., Graf
N., Hollink L. and Bucur A.: EURECA D4.1: Requirements analysis and selection of the
initial clinical scenarios for core datasets.

[Kang et al., 2013] Kang N., Singh B., Afzal Z., van Mulligen E. M. and Kors J. A. (2013):
Using rule-based natural language processing to improve disease normalization in
biomedical text. J Am Med Inform Assoc, 2013, 20, 876-81.

[Mitankin et al., 2011] Mitankin P. N., Mihov S., and Schulz K. U. (2011): Deciding word
neighborhood with universal neighborhood automata. Theoretical Computer Science
412(22): 2340-2355, 2011.

[Mitankin, 2005] Mitankin P. N.: Universal Levenshtein Automata. Building and
Properties. Master thesis, Sofia University, 2005.

http://www.nettab.org/2007/slides/Tutorial_Bodenreider.pdf

WP3 D3.5, Version 1.0

EURECA

ICT-2011-288048

Page 33 of 38

© EURECA <Public>

[Nenadić et al., 2004] Nenadić G., Ananiadou S. and McNaught J.: Enhancing automatic
term recognition through recognition of variation. In: Proceedings of COLING 2004, pp.
604–610, Association for Computational Linguistics.

[Nenadić et al., 2005] Nenadić, G., Spasić I. and Ananiadou S.: Mining Biomedical
Abstracts: What’s in a Term? In: Su K.-Y., Tsujii J., Lee J.-H. and Kwong O. Y.(Eds.)
Natural Language Processing – IJCNLP 2004, Springer-Verlag.

[Schulz & Mihov, 2002] Schulz K. U. and Mihov S: Fast string correction with Levenshtein
automata. International Journal of Document Analysis and Recognition (IJDAR), 2002, 5,
67-85.

[Spasić et al., 2013] Spasić I., Greenwood R.M., Preece A.D., Francis N., and Elwyn G.:
FlexiTerm: a flexible term recognition method. In Journal of Biomedical Semantics
(2013)27-27

[Spasić et al., 2014] Spasić I., Livsey J., Keane J. A. and Nenadic G.: Text mining of
cancer-related information: Review of current status and future directions. International
Journal of Medical Informatics, 2014, 83, 605-623.

[Uzuner et al., 2011] Uzuner Ö., South B. R., Shen S., DuVall S. L.: 2010 i2b2/VA
challenge on concepts, assertions, and relations in clinical text. J Am Med Inform Assoc.
2011 Sep-Oct;18(5):552-6. doi: 10.1136/amiajnl-2011-000203.

[Wu et al., 2012] Wu S. T.-I., Liu H., Li D., Tao C., Musen M. A., Chute C. G., and Shah
N. H.: Unified Medical Language System term occurrences in clinical notes: a large-scale
corpus analysis. Journal of the American Medical Informatics Association 19(1), 149-156.

WP3 D3.5, Version 1.0

EURECA

ICT-2011-288048

Page 34 of 38

© EURECA <Public>

Appendix A Downloading UMLS Terminologies

• Make sure you have the right permissions/license to use said terminologies
• Download UMLS core package (see section A.1 below)
• Select and download the terminologies you want to use (see section A.2 below)

A.1 Downloading UMLS core package

In order to download the terminologies from UMLS you first need to download the core
UMLS package. In order to download this package you need to go through the following
steps:

1. Create a UTS (UMLS terminology services) account by signing up in the

following website: https://uts.nlm.nih.gov/home.html

It takes usually 1 to 3 days before a new registration is validated. You will receive

an email informing you.

2. Sign in to the UTS (https://uts.nlm.nih.gov/home.html) to access applications,

downloads, and resources.

3. Access the Downloads menu and select UMLS Knowledge Sources

(http://www.nlm.nih.gov/research/umls/licensedcontent/umlsknowledgesources.ht

ml).

4. Download and extract all UMLS files (Full Release Files) to the same directory.
5. Read the README file (it highlights changes for the current release) before

proceeding with the next steps.
6. Unzip the mmsys.zip compressed folder. It contains command scripts to run the

MetaMorphosys system, which is the UMLS installation tool.

A.2 Selecting and downloading a subset of UMLS
terminologies

1. Open a terminal window and change to the directory of the downloaded files.
Type the appropriate command for your platform:

./run.bat (Windows)

./run_mac.sh (or click on the run_mac.command file)

./run_linux.sh

2. Click on Install UMLS:

https://uts.nlm.nih.gov/
https://uts.nlm.nih.gov/home.html
https://uts.nlm.nih.gov/
https://uts.nlm.nih.gov/home.html

WP3 D3.5, Version 1.0

EURECA

ICT-2011-288048

Page 35 of 38

© EURECA <Public>

3. Select the source directory containing the UMLS files downloaded in step 6
4. Select the destination directory where you want the UMLS data files to be stored
5. Uncheck the SPECIALIST Lexicon like shown in the following figure and click OK.

WP3 D3.5, Version 1.0

EURECA

ICT-2011-288048

Page 36 of 38

© EURECA <Public>

6. Click on New Configuration (or use an existing one by selecting Open

Configuration) in order to be able to select a subset of UMLS terminologies:

7. Accept the Licence Agreement Notice:

8. Choose the subset of UMLS terminologies you want to select and click OK:

9. Use the tab: Source List in order to select the list of terminologies to include or

WP3 D3.5, Version 1.0

EURECA

ICT-2011-288048

Page 37 of 38

© EURECA <Public>

exclude from the downloading:

10. Once you have finished with the customization of the UMLS subset, go to the
main menu above the tabs select:

Done Ą Begin Subset

If you changed the default selected subset, you will be asked if you want to save
a new configuration file where your selected list will be stored.

11. The subset of UMLS terminologies will be downloaded and at the end of the
process, in the destination folder you will have the following directories with the
respective data files:

NET directory: Semantic Network data files

META directory: Metathesaurus data files

A.3 Additional information

¶ At the end of each year you will need to provide a report to the NLM regarding the
way you are using UMLS data.

WP3 D3.5, Version 1.0

EURECA

ICT-2011-288048

Page 38 of 38

© EURECA <Public>

¶ Additional documentation is available at: http://www.nlm.nih.gov/research/umls.

¶ More details about using MetamorphoSys tool in downloading or customizing
UMLS are available with the following link:

https://www.nlm.nih.gov/research/umls/implementation_resources/metamorphosys/help.h
tml

http://www.nlm.nih.gov/research/umls
https://www.nlm.nih.gov/research/umls/implementation_resources/metamorphosys/help.html
https://www.nlm.nih.gov/research/umls/implementation_resources/metamorphosys/help.html

