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1 Introduction 

This deliverable report is a follow-up of both D3.1 (Initial prototype for concept extraction) 
and D3.2 (Initial prototype for relation identification between concepts). Its purpose is to 
describe the intermediary-stage status of these two information extraction (IE) 
components, and the main enhancements since the delivery of the first prototypes. 
 
The concept identifier is a tool to identify concepts and terms in medical free text. It is 
meant to be general enough to be used in any EURECA use case dealing with 
documents in English or French, as long as the required terminologies are selected. The 
initial prototype was finalized in February 2013. After a study of existing state-of-the-art 
comparable systems, and a study of existing standard terminologies and the Unified 
Medical Language System (UMLS) from the National Library of Medicine (NLM), the 
UMLS has been chosen as the central terminological and ontological resource on which 
the concept identifier is built. The main reason is that UMLS, as a meta-thesaurus, plays 
the role of a pivot linking a large number of widely used terminologies, including those 
recommended within EURECA in deliverable D4.1 [Krykwinski et al., 2012]. It hence 
offers the possibility of changing the initial terminologies used by the concept identifier, or 
plugging other vocabularies, while still ensuring that the rest of the components and 
resources (e.g. for relation extraction) remain compatible, thanks to the normalized 
UMLS concepts and hierarchical semantic types. 
 
In the initial version of the concept identifier, the terms from the source terminologies 
were cleaned, modified and enriched following experiments from [Hettne et al. 2010; Wu 
et al., 2012], and then manually merged with the general-language finite-state transducer 
(FST) lexicon. This merging had yielded a compact and very fast term identification 
process because both regular language words and medical terms were stored in and 
looked up from the same single lexical FST. However, it had two downsides: (1) a lack of 
adaptability of the concept identifier, since customizing it with other terminologies 
required some expertise in NLP and in finite-state calculus to compile and merge the new 
terms with the general-language lexicon; and (2) the internal structures of compound 
terms (nested terms) were not identified, since the longest-match identification strategy 
for general language words was applied. In the last months, we addressed these two 
weaknesses by redesigning and re-implementing a new version of the concept identifier, 
including a terminology compiler that allows the user to choose other terminologies and 
automatically add them to the tool. This new version of the Xerox concept identifier is 
described in details in chapter 2. 
 
As for relation extraction, the initial prototype described in D3.2 consisted in three main 
components: a regular-expression-based component, a linguistic-based component, and 
a machine-learning (ML) component. In contrast with the concept identifier, the relation 
extractor is a generic tool that requires being instantiated for each use case in order to 
function, because it is not possible to have a single universal tool that covers all possible 
relation types for all possible use cases. The instantiation of the relation extractor to a 
use case consists in providing specific resources that cover the types of relations 
required for said use case. For instance, for the regular expression (regex) module, the 
resources are regular expression patterns covering the targeted relation types. For the 
machine-learning based module, the resources would be training data, i.e. texts manually 
annotated with the relations that are relevant for the use case. Finally, in the case of the 
linguistic-based module, the resources consist in a set of extraction rules expressing 
conditions on the linguistic structures and annotations produced by the underlying parser. 
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For the purpose of developing the initial prototype of the relation extractor, we worked on 
the definition and extraction of relation types relevant for the representation of clinical trial 
eligibility criteria (CTEC), and described in D3.2 an initial set of CTEC extraction rules for 
the linguistic-based component. 
 
In the last months however, we haven’t worked much on further instantiation of the 
relation extractor to the use cases, partly because patient data was not yet available (use 
cases: cancer registry reporting, and reporting episodes of febrile neutropenia), and also 
because efforts were put on the enhancement of the concept identifier and the 
development of its terminology compiler, to make it easily customizable with different 
terminologies by partners working on other use cases not necessarily requiring patient 
data, such as the update of guidelines, within WP6. 
 
Much of the work done on the relation extractor in the last months has been on 
enhancements to the generic system. Regarding its linguistic-based component 
(XMedlan), we started working on the addition of an interactive learning layer that would 
allow the user to improve the quality of its extractions, but this is still an ongoing work 
with a modelling that is currently still evolving; we will therefore describe it in the next 
deliverable on the IE components. However, regarding the machine-learning component, 
NRC has implemented many improvements in the last months, including in computational 
efficiency. An interesting evaluation experiment has also been conducted on data from 
one of the editions of the i2b2 Clinical NLP Shared Tasks [Uzuner et al., 2011]. The 
experiments showed that despite being a generic component that was not specifically 
developed for i2b2 data and tasks, the NRC ML-based relation extractor achieves 
competitive accuracy results. The enhancements of this component and the evaluation 
experiment are described in chapter 3 of this document. 
 
The conclusion (chapter 4) summarizes the current status of the IE components and 
briefly describes future work. 
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2 Concept identifier: the new version 

2.1 Background and motivations 

The initial prototype of the Concept Identifier (CI), described in D3.1 [Aït-Mokhtar et al., 
2013], was built from UMLS terminologies that were of category 01 and of interest to 
EURECA partners: LOINC, NCI and ICD9CM. The terms from those terminologies were 
selected, cleaned, enriched with some variations, and finally compiled into finite-state 
lexical transducers (cf. D3.1). We could integrate these terminologies in the distributed 
tool because UMLS “category 0” terminologies do not entail any licensing obligations in 
redistributing derivative work, namely the compiled term database required by the CI 
engine for term identification. Therefore, term occurrences returned by the CI did not 
provide SNOMED-CT codes, or codes from other terminologies than the three mentioned 
above. It did provide UMLS codes (Concept Unique Identifiers, CUIs), from which it is 
possible to get the corresponding SNOMED-CT codes through the mappings available in 
the UMLS metathesaurus. 
 
However, accessing terminology codes through UMLS mappings was not a 
straightforward solution for the users: it implied the implementation of an interface for 
accessing the UMLS mappings, or relying on an online annotation and mapping service 
like BioPortal to get SNOMED-CT and other terminologies codes. Besides, some of the 
EURECA use cases involving partners like IJB or UdS have to deal with non-English 
termsets that are not integrated to UMLS, but still require efficient identification of those 
term occurrences in texts. Therefore, one of the most important features that we had to 
add to the concept identifier is terminological adaptability, i.e. allowing users with no 
expertise in NLP or finite-state calculus to adapt the CI by providing terms of licensed 
terminologies (e.g. SNOMED-CT) or their own term sets. Adding such feature implied two 
major changes in the initial CI prototype: 
 

1. Developing and integrating a generic term compiler that would perform 
automatically the basic operations needed to transform lists of terms provided by 
the user into a compiled version for efficient concept identification and lookup. 
The input term set can be any subset from the dozens of UMLS integrated 
terminologies, or non-UMLS terminologies, or even user’s homemade 
terminologies. 
 

2. Separating the compiled medical terms from the general language lexicon, so that 
the former can be changed and modified automatically by compiling user’s term 
sets without any impact on the linguistic analyser. Integrating the terms into the 
general language lexicon in the form of lexical finite-state transducers, as it was 
done in the initial CI prototype, speeds up the identification process, but the 
integration requires fine-grained linguistic-based decisions that are difficult to fully 
automate. 

 
The ability to recognize the internal structure of compound terms, i.e. identifying 
subterms of complex terms, is another motivation for changing the initial CI method. A 
subterm, or nested term, is “an individual term that may occur within longer terms as well 
as independently” [Nenadić et al., 2005]. In the initial prototype, only the longest-

                                                
1 UMLS terminologies of “category 0” are those subject to the general terms of the License for Use 
of the UMLS® Metathesaurus®, with no additional licensing restrictions. 
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matching terms, from left to right in the input text, were returned: e.g. “kidney cancer” is 
identified but not its internal components “kidney” and “cancer”. Identifying the internal 
components is a first and mandatory step towards the identification of non-listed syntactic 
variants, like “cancer of the kidney”, through syntax-based transformation patterns (Kang 
et al., 2013). Similarly, in “stage I and II”, only “stage I” is returned as a medical term, 
while the identification of the internal term “stage” can allow for future enhancement in 
order to recognize coordinated (discontinuous) terms (“stage II” in this case) through 
local syntactic patterns. 
 
The new CI method and components are described in the next sections. Section 2.2 
provides an overview of the new approach. In section 2.3, we describe the terminology 
compiler (TC) that we developed to allow for the customization of the concept identifier 
with user-selected terminologies. Section 2.4 describes the new method for the 
identification of terms in texts. Finally, we explain in section 2.5 how to use this new 
version of the concept identifier, including how to customize it by integrating other UMLS 
or non-UMLS terminologies. 
 

2.2 Overview of the new version 

Like in the first prototype, the new concept identifier comes with a default term database 
that includes NCI, LOINC and ICD9CM terms and codes, in addition to the UMLS 
concept unique identifiers (CUI) and semantic types. However, the user can now change 
the term DB of the concept identifier without any NLP expertise:  any terminology from 
UMLS or even user’s own terminology can be defined as the set of terms that the 
concept identifier will recognize in texts. For that purpose, the new version includes a 
terminology compiler that can compile and store term sets provided by the user for the 
concept identifier. Any terminology included in UMLS raw data files downloaded from the 
National Library of Medicine (NLM) website can be selected and used. Other 
terminologies, including user’s own term sets, can also be used as far as they’re put in 
the tabbed format (tsv) required by the term compiler. The compiler is described in 
section 2.3 below. 
A new method for term identification has been implemented that separates term 
information from general language lexicon. As explained in the previous section, the main 
motivation is that such separation makes it possible for the user to change the term DB 
without NLP expertise. It also makes possible the identification of subterms, i.e. terms 
contained in other (longer) terms, allowing for the identification of internal structure of 
compound terms, a prerequisite if we plan in future versions to address complex term 
variation (e.g. derivational term variations like in “rectal cancer” vs. “rectum cancer”, or 
discontinuity due to coordination). The new term identification method is described in 
section 2.4. 
 

2.3 Terminology compiler 

 

2.3.1 Overview 
The terminology compiler takes as input source terminologies selected by the user, either 
from UMLS data, or from user-defined term lists (see Figure 1 below), and compiles them 
into a terminology DB that the concept identifier can use for term recognition in free texts. 
The compiler comes with a core DB containing the core UMLS concepts identifiers and 
semantic types. When UMLS terminologies are selected for compilation, the compiled 
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terms are linked to the UMLS semantic types thanks to the initial core DB. Similarly, if 
users provide their own terminologies with UMLS CUIs assigned to the terms (see the 
example of a French terminology in Figure 1), the compiler links them to the UMLS 
semantic type hierarchy. 
 
The resulting compiled term DB actually contains three components: 
 

1. The UMLS core DB, which is included to provide the mappings to the semantic 
types and also the mappings between codes of compiled terminologies, through 
the UMLS CUIs. 
 

2. A terminology DB, which is a key-value store that maps the source terms to their 
source terminology codes, and/or to the UMLS CUIs, or to any attribute-value 
elements provided in the user’s source terminology. 
 
 

3. A finite-state transducer (FST) of the terms with their semantic types, used for fast 
and efficient in-memory term lookup (including approximate term matching) during 
the NLP analysis and the concept identification process. 
 
 

 

Figure 1: Term compilation of UMLS or user's terminologies 
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2.3.2 Term finite-state transducer 
A finite-state transducer (FST) is a formal device that encodes pairs of related symbol 
strings: an input string and an output string. Hence, an FST encodes two related 
languages built over a given alphabet of symbols: the set of all input strings and the set 
of all output strings to which the input strings are mapped [Beesley & Karttunen, 2003]. 
When provided with a string belonging to one of the input strings, the FST recognizes it 
and produces all the output strings to which it is mapped. 
 
An FST has a set of states, among them an initial state and possibly one or more final 
states, and a set of directed transitions between states. A transition is labelled with a pair 
of symbols. Let’s assume that the right symbol refers to the input level, and the left to the 
output level. An FST accepts an input string s if there is at least one sequence of 
transitions from the FST initial state to a final state, labelled such that the concatenation 
of all the right-side symbols of these transitions is equal to the input string s. If so, the 
FST produces all the possible output strings, by concatenating the left-side symbols of all 
the possible transition sequences. In practice, finite-state transducers are convenient 
data structures for storing large sets of pairs of strings, like dictionaries of word forms or 
terms along with their properties, e.g. lemmas or base forms, part-of-speech tags, 
semantic features, etc., offering both compactness and fast string lookups. 
 
The term FST that our terminology compiler builds from the terminologies encodes the 
mappings between typographically normalized term forms (the input level) and their 
original forms plus UMLS semantic type(s) (the output level). The normalized forms are, 
basically, lower-case forms of terms. An example of such string pair could be, for 
instance, “cancer” at the input level, and “Cancer+Neoplastic_Process”, at the output 
level. 
 
Figure 2 shows a simple example of a small FST built for a small set of 9 terms. By 
convention, transitions labels with a single symbol (instead of a pair) are actually pairs of 
identical symbols on both sides: for instance, the transition between initial state s0 and 
state s2 is labelled with c, actually representing the pair <c:c>, meaning that taking this 
transition requires reading character c from the input string, and produces the same 
character c as output. Hence, if the input text string is “cancers”, the lookup process 
starts with initial state s0, and goes through states s2, s6, s10, s15, s20, s25 and fs29, 
matching the input characters of “cancers” with the right side symbols of the transition 
labels, and outputting “cancer+Neoplastic_Process” from the left side of the transition 
labels. This FST example shows why FSTs offer relative compactness, when compared 
to other structures like B-Trees: when the FST is minimized, not only similar prefixes of 
strings share the same paths, but also their common suffixes are encoded in shared 
ending paths. For instance, the terms “invasive” and “invasive cancer” share the suffix 
path “i-n-v-a-s-i-v-e” from state s0 to state s34, while the terms “breast cancer”, “kidney 
cancer”, “invasive cancer” and “infiltrating cancer” share the same suffix path “SP-c-a-n-
c-e-r-<+Neoplastic_Process:0>”, from state s34 to final state fs29. 
  
 
The FST shown in Figure 2 is a small and simplified example. In practice, the compiled 
term FSTs are of course much bigger. As an example, when we consider all the terms of 
SNOMED-CT, NCI, LOINC and ICD9CM together, we obtain about 903K typographically 
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normalized terms2 with an average length of 25.95 characters per term, and when 
compiled and encoded along with their semantic types, we obtain an FST that has 
3,115,008 states and 3,827,460 transitions, stored in about 93.61 MB in memory, which 
go down to 6.92 MB when saved on disk. 
 
 

                                                
2 The original set of non-normalized terms from these 4 terminologies, including typographical 
variations, is even larger. 
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Figure 2: An example of a finite-state transducer of compiled terms 
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2.4 Term identification method 

2.4.1 Overview 
Figure 3 depicts the new approach for the identification of medical concepts in texts. 
First, the input text is tokenized and each token is assigned one or several part-of-speech 
(POS) tags. Unknown tokens, i.e. tokens not listed in the general language lexicon 
because they are new or too domain-specific or subject to spelling errors, are assigned 
possible POS tags by a “guesser” algorithm, based on general patterns, including prefix 
and suffix patterns. Ambiguous POS assignments are partially disambiguated with a POS 
tagger. 
 
Afterwards, the sequence of tagged tokens goes into a syntactic module that determines 
which n-grams of tokens (i.e. subsequences of tokens of length n, with n=1,…,8 in the 
current version) satisfy syntactic constraints required for term candidates. However, since 
our approach to concept identification relies heavily on term lists, we don’t need at this 
stage to define exact syntactic patterns for term candidates [Spasić et al., 2013]: rather, 
we apply some loose syntactic constraints to eliminate certain syntactic configurations. 
For instance, subsequence of tokens ending with determiners cannot be term candidates 
and are discarded at this stage. The resulting initial set of term candidates goes into the 
normalization module which produces an extended set of term candidates using 
typographical normalization, morphological/inflectional normalization and 
orthographical/spelling normalization. These three types of normalization are explained 
below in subsections 2.4.2, 2.4.3 and 2.4.4 respectively. Spelling error normalization is 
also performed with maximum edit distance of 1 in the current version (see 2.4.5). 
 
Each element of the resulting extended set of term candidates is looked-up in the finite-
state transducer (FST) of terms produced by the term compiler described in section 2.3 
above. It is important to note that this extended set of term candidates can be quite large 
when all possible normalization types are combined with all possible n-gram lengths: this 
can yield several thousands of term candidates. However, two features of the term 
lookup process help circumvent potential efficiency issues in the term lookup process. 
 
First, we organized the term lookup process as a sequence of prioritized strategies for 
each initial term candidate: 
 

1. Simple lookup (of the initial non-normalized term form) 
2. Typographical normalization + lookup 
3. Morphological normalization + lookup 
4. Typographical + Morphological normalization + lookup 
5. Orthographical normalization + lookup 
6. Typographical + orthographical normalization + lookup 
7. Spelling error normalization (max edit distance = 1) performed with each of the 

previous strategies (from strategy 1 to 6) sequentially. 
 

As soon as a term is identified in one of these strategies, the process is stopped and no 
further normalizations are performed. As the first three strategies cover the vast majority 
of term occurrences in texts, situations with a large number of normalized form 
candidates are rare. In the examples of Figure 3, none of the many possible normalized 
forms of “cancers” will be tried, since the initial form “cancers” is listed in the compiled 
term list. 
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Another feature of the identification process that prevents efficiency issues is that the 
normalizing finite-state transductions and the term lookup transduction are intertwined, 
even though in Figure 3 they are separated for clarification purposes: the normalizing 
transducers and the term transducer are actually traversed in parallel. At each character 
position in the initial term, whenever the normalizing transducers produce characters, 
they are immediately tested at the current state of the term transducer and only those 
normalized characters leading to a successful arc transition are kept. This means that the 
content of the compiled listed terms guides the normalization process and usually prunes 
irrelevant alternatives early in the process. Among all the theoretically possible 
normalized forms of a term, only a few are tried entirely, and many of them are rejected 
early, after only a couple of their first characters are processed. 
 
After the term lookup step, we obtain a set of identified terms in their initial forms, i.e. as 
they occur in the input text, along with the terminology forms, that is, the original forms 
found in the source terminologies. Compound terms, i.e. terms containing other terms, 
are then structured into embedding levels: the first level contains the longest terms, from 
left to right, identified in the input text, and the other levels contain the embedded 
subterms. 
 
The identification of nested terms and the internal structure of compound terms will allow 
for future improvements of the concept identifier by introducing syntactic-based 
normalization means for complex term variations like coordinated terms, which improves 
over dictionary-based identification [Kang et al., 2013].  
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Figure 3: General approach in the new concept identifier 
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2.4.2 Typographical normalization 
The term forms stored in the input side of the term FST (see section 2.3.2) are lower-
cased forms of the original terms, except for acronyms. In free texts however, terms can 
occur entirely or partially in uppercase. Therefore the typographical normalization 
transducer takes as input strings of characters partially or entirely in uppercase and 
produces lower-cased forms, so that they can be looked up in the term FST if the simple 
lookup strategy without typographical normalization does not succeed. 
This normalizing FST is obtained from the union of regular expressions (regex) that maps 
input strings to their lowercase forms. As an example, let’s consider the normalization of 
all-uppercase forms. We first define a regex with pairs of symbols that map any 
uppercase letter to its lowercase form, thanks to the following disjunctive expression (by 
convention, the right symbol is the input level, and the left is the output level): 
 
define UPPTOLOW   ǁ Áƙ! ƴ  Âƙ" ƴ Ãƙ# ƴ ƛ ƴ Úƙ: ǂƘ 
 
So now UPPTOLOW is a finite-state transduction that requires an input uppercase letter 
and turns it to its lowercase equivalent. We also define digits and separators, which can 
be part of compound terms, but without any mapping because these characters are not 
affected by lowercasing: 
 
define NUM   ǁ ʣ ƴ ʦ ƴ ʧ ƴ ƛ ƴ ʮ ǂ;         
define SEP   ǁ Ƨ Ƨ ƴ  ƧƗƨ ƴ Ƨ-Ƨ ƴ ƛ  ǂƘ 
 
We want to transform all-uppercase term candidates to their lowercase forms, but only if 
their length is at least 5 (4 or less uppercase letters are generally acronyms that we 
prefer to keep in uppercase, for better readability). The terms may be compounds or 
contain numbers. The ALLTOLOW regex below does the job: 

 
define ALLTOLOW  [UPP2LOW]^5  [UPP2LOW | SEP | NUM]*  
 
As defined above, UPPTOLOW requires an uppercase letter and maps it to lowercase. 

Hence, [ UPPTOLOW] ^5 ensures in the global regex that there is at least 5 such uppercase 

letters in the input string. 
 

2.4.3 Morphological (inflectional) normalization 
By “morphological normalization”, we refer to the transformation of non-listed 
morphologically inflected forms to their listed base forms. Therefore, derivational 
variations, i.e. morphological transformations yielding a change in part-of-speech 
category (e.g. Noun-to-adjective variations like “abdomen” and “abdominal”) are not yet 
handled.    
Similarly to typographical normalization, we implemented morphological normalization as 
regular expressions the union of which is an FST defining mappings between the 
inflected forms and their base forms. For English medical terms, morphological inflection 
is mainly due to plural. We considered the plural inflection rules listed in Table 1, which 
cover the vast majority of plural inflections.  As an example of how the rules are 
implemented, let’s consider the third inflection rule, mapping any base form ending with a 
consonant and the letter y to its plural form the y transforms to ies. We first define the set 
of consonants: 
 
define CONS ǁ Â ƴ Ã ƴ Ä ƴ ƛ ƴ Ú ǂƘ 
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Then we define the inflectional mapping ENDCONSY as: 

 
define ENDCONSY  [  ?+ CONS  y:i   0:e   0:s ];  
  
Symbol “?” stands for any character, and “0” denotes the empty string. Again, note that 

by convention the input level is at the right element of the symbol pairs and the output 
level on the left side. Therefore, inflection rule ENDCONSY accepts any form ending with a 

consonant and “ies”, and transforms the “ies” ending into “y”. The defined mapping is 
therefore from the plural form (not listed in the original term set) to the singular form. 
 
 

Inflection rule Examples 

Plural with –s cancers of the kidney Ą cancer of the kidney 
Invasive cancers Ą Invasive cancer 
Fluorescent immunoassays -> Fluorescent immunoassay 

Plural with –ses 
Endings: -sis 

Dysgeneses Ą Dysgenesis 

Plural with –es 
Endings: –ch, -sh, -ss, 
-x, -s 
 

Hetastarches Ą Hetastarch 
Petechial rashes Ą Petechial rash 
Bartholin's abscesses Ą Bartholin's abscess 
Abdominal reflexes Ą  Abdominal reflex 
Calovo viruses Ą Calovo virus 

Plural with –ies 
Ending: consonant-y 

Acquired Immune Deficiencies Ą Acquired Immune Deficiency 

Table 1: Main plural inflection rules of English terms 

Morphological normalization is independent from specific terminologies, but obviously 
depends on the language. We have also implemented general inflection rules for French 
to cover most of plural inflections and allow for the concept identifier to identify inflected 
forms in French texts that are not listed in provided term sets (e.g. morphological 
inflections of the form -al/-aux, -eau/-eaux, -/-s, etc.) 
 
We found that in standard terminologies, many terms do not have their plural forms 
listed, although we haven’t done any precise quantitative study. The plural examples 
listed in Table 1 are not listed in standard terminologies used by BioPortal and therefore, 
as of July 2014, the BioPortal text annotator3 cannot identify those plural terms, despite 
being able to identify their equivalents in singular. In their experiments, [Nenadić et al., 
2004] showed that the incorporation of inflectional normalization improved recall by 25%. 
However, the real impact of handling morphological inflection obviously depends on the 
initial coverage of integrated vocabularies, and on how much those non-listed plural 
forms are frequent in the input documents. 
 

2.4.4 Orthographical normalization 
By orthographical normalization we refer to the normalization of correct orthographical 
term variants (the handling of spelling errors is described in next subsection). Some of 

                                                
3 http://bioportal.bioontology.org/annotator: last accessed: 26/07/2014. 
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these variations are due to spelling difference between American and British English. 
Table 2 shows the implemented orthographic equivalences in the current version. 
 
 

Orthographic variation Examples 

ae, æ, oe, œ  =  e  haemorrhage / hemorrhage 
oestrogen / estrogen 

our = or abnormal colour / abnormal color 

is = iz decolourising carbon / decolorizing carbon 

ph = f sulphafurazole / sulfafurazole 

tion = sion distention / distension 

Table 2: Orthographic normalization rules 

Similarly to morphological normalization, orthographic equivalences are implemented as 
a finite-state transducer obtained from the union of regular expressions that define each 
of the equivalences.  
 

2.4.5 Spelling error normalization 
When a term candidate is not found in the term FST even after combining the three 
normalization types defined in the preceding subsections, the concept identifier attempts 
to recognize it as a misspelled term. We handle spelling errors with the notion of 
Levenshtein edit distance between two strings, which can be defined as the number of 
single-character edit operations required to transform one string into the other. An edit 
operation can be an insertion, a deletion or a substitution of one character. In order to 
avoid false positives, we initially considered a maximum edit distance of 1 with a 
minimal term candidate size of 5 characters, based on the commonly accepted 
estimation from [Damerau, 1964] that an edit distance of 1 covers about 80% of 
misspellings in texts, and on the fact that most misspelled words are longer than 4 
characters: a quick analysis of 366 most often misspelled English words from the Moby 
project4 shows that 96% of them have a length of at least 5 characters. In any case, 
these thresholds might be changed depending on experimental results in the use cases 
where the concept identifier is used, and in particular, on the frequency of misspellings in 
processed documents. 
 
When dealing with hundreds of thousands of listed terms, the main issue with 
approximate string matching based on edit distance is efficiency. Obviously, one cannot 
opt for brute-force sequential comparison of the input term candidate with all the terms in 
the term FST in order to find similar terms with a maximum edit distance of 1. 
Fortunately, efficient approximate string matching techniques have been developed 
based on finite-state automata (FSA). [Shulz et al., 2002] defined the notion of 
Levenshtein automaton of degree k for an input string s as an FSA that accepts all 
possible strings s’ such that the Levenshtein edit distance between s and s’ is equal to or 
less than k. They proposed a method to automatically build a deterministic Levenshtein 
automaton of degree k for any input (misspelled) word w, and therefore modeled the 
problem of approximate matching of input word w within a (very large) dictionary as the 
online intersection of the Levenshtein automaton for w with the dictionary finite-state 

                                                
4 http://en.wikipedia.org/wiki/Moby_Project: last accessed 28/07/2014  

http://en.wikipedia.org/wiki/Moby_Project
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automaton, assuming all the dictionary words are pre-compiled and stored in an FSA.  
[Mitankin, 2005], and more recently [Mitankin et al., 2011] generalized the idea to the 
notion of universal neighborhood automata, abstracting from the input strings and 
covering a variety of string distance types. 
 
We use the same method for spelling errors except that we combine the edit distance 
with the six lookup strategies listed in section 2.4.1. This means that in practice, the 
Levenshtein automaton is not intersected with the term FST only (first strategy), but it is 
also intersected with the composition (cascade) of the normalizing transducers and the 
term FST used in the other strategies. This allows for the recognition of misspelled and 
non-listed uppercased and/or inflected terms, e.g. “Petechal Rashes” will be identified as 
the term “Petechial rash”, even though strictly speaking the edit distance between these 
two strings is greater than 1. 
 
Spelling error normalization is obviously terminology-dependent, but it is language-
independent in the sense that the same algorithm and parameters are used for English 
and French concept identification. 

2.5 Using the new concept identifier 

The new concept identifier (current version is 1.1.2) is delivered as a zip package as 
usual. It includes the main java program XMedlan.jar , the NLP resources and the 

default term database. The NLP resources now include linguistic resources for French 
(morphological dictionary, part-of-speech tagger and syntactic dependency parser) used 
for the identification of medical concepts in French free-texts. 
 
The default term database is for English terms and includes NCI, LOINC and ICD9-CM 
vocabularies. It is possible to customize the concept identifier for using other 
terminologies with the following steps: 
 

1. Getting the terminologies from UMLS (e.g. SNOMED-CT) or providing user’s own 
terminology. 
 

2. Compiling them (automatically) to create term databases (section 2.5.1), usable 
by the concept identifier. We give an example showing how to compile SNOMED-
CT (section 2.5.1.2). We also explain how to compile any terminology that is not 
integrated in UMLS, e.g. user’s homemade list of terms (section 2.5.2). 
 

3. Once a terminology is compiled into a new term DB, it can be used with the 
concept identifier to identify terms in texts (section 0). 

 
 

2.5.1 Customizing with UMLS terminologies 
In order to customize the concept identifier with UMLS-mapped terminologies, e.g. using 
SNOMED-CT instead of the default provided terminologies, a user can download UMLS 
data and compile them with the term compiler of the CI. This will create a new term DB 
(distinct from the default term DB that is delivered with the CI). Once the new term DB is 
created, you can use it to identify concepts in texts by running XMedlan concept 
identification with the pathname of the new term DB as a parameter. 
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2.5.1.1 Downloading UMLS data 

Please refer to Appendix A for the detailed procedure (including screenshots) to follow in 
order to download UMLS core data and terminologies. In the following subsections, we 
assume that <UMLS_FOLDER> refers to the root directory where the downloaded UMLS 

data is stored. 
 

2.5.1.2 Selecting and compiling UMLS terminologies for the concept identifier 

In order to compile a specific set of UMLS terminologies, the user launches the following 
command: 
 
java - jar XMedlan.jar   - tc    - umls <UMLS_FOLDER> - terminologies 
<IDENTIFIERS>  - dest  <DESTINATION_FOLDER> 
 
where : 

¶ - tc  is the option that launches the terminology compilation 

¶ <UMLS_FOLDER> is the root folder of the downloaded UMLS data. 

¶ <IDENTIFIERS> is a sequence of comma-separated identifiers of UMLS 

terminologies 

¶ <DESTINATION_FOLDER> is the (new) folder where the new terminology DB will be 

stored 
 
The terminology identifiers are the terminology acronyms used in the list of all available 
UMLS terminologies, accessible at: 
http://www.nlm.nih.gov/research/umls/sourcereleasedocs/index.html (last accessed: 
30/07/2014) 
 
For example, SNOMED-CT identifier is SNOMEDCT_US, and LOINC identifier is LNC. 
 
Example 
Let’s assume that we want the concept identifier to recognize terms from SNOMED-CT 
and LOINC, so we want to compile and create a new term DB containing SNOMED-CT 
and LOINC terms. Let’s assume c:/Data/UMLS   is the root folder of the downloaded 

UMLS data, and that c:/Users/sam/MyTermDB  is the new folder where we want to store 

the new term DB. The following command will produce the new term DB: 
 
java - jar XMedlan.jar Ƶtc - umls "c:/Data/UMLS" - terminologies 
"SNOMEDCT_US,LNC"  - dest "C:/users/sam/MyTermDB"  
 
 
Please be aware that for large terminologies, the compilation process may take several 
minutes on a normal desktop: about 15-25 minutes for NCI, LOINC, SNOMED-CT and 
ICD9-CM together. 
 
Once the new term DB is created, it can be used easily with the CI, as explained in 
section 0. 
 

2.5.2 Customizing with non-UMLS terminologies 
It is also possible to customize the CI with other terminologies than those available 
through UMLS. In this case however, the user has to prepare the list of terms in a tsv, 

http://www.nlm.nih.gov/research/umls/sourcereleasedocs/index.html
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UTF8 encoded plain text file, where each line contains a term form and possibly a list of 
tab-separated attribute-value pairs for that term. The general line format is: 
 
<term_form>  ATTR1:VAL1 ATTR2:VAL2ƛƚƚ ATTRn:VALn 
 
Where <term_form>  is the term string (possibly containing spaces, but not tabs), and 

ATTRi :VALi   are attribute-value pairs encoding any information that the user wants to get 

when the concept identifier recognizes occurrences of the term in texts. Although not 
required, it is suitable that one of these attributes be a UMLS concept unique identifier 
(CUI) when possible: this would allow the concept identifier to map the term occurrences 
to UMLS semantic types. As an example, the following line defines the French term 
“pédoncule cérébral” with a mapping to UMLS concept C0007793:  

 
pédoncule cérébral  CUI:C0007793 MYID:36592 
 
A term set in the format above can be compiled with the following command: 
 
java - jar XMedlan.jar Ƶtc - tsfile "c:/Data/myterms.tsv " - dest 
"C:/users/sam/MyTermDB 2"  

 
where c:/Data/myterms.tsv  is the pathname to the terminology file and 

C:/users/sam/MyTermDB2  is the pathname to the new folder that will contain the new 

term DB. 
 

2.5.3 Running the concept identifier with a specific term DB 
In order to use a specific term DB, obtained from the compilation of term sets as 
explained above, the concept identifier can be run with the following command-line: 
 
Java Ƶjar XMedlan.jar - ci  - termdb <TERMDB_FOLDER>  - doc document.txt   
 
where <TERMDB_FOLDER> is the pathname of the term DB folder that will be used for 

term identification, and document.txt is the pathname to the text document to process. 

You can add option Ƶsubterms  if you want to get not only the longest identified terms, 

but also the nested terms. 
 
From the Java API, in order to process a text or collection of texts, you need to create a 
ConceptIdentifier  object by providing the pathname to the compiled term DB, e.g.: 

 
ConceptIdentifier cIdentifier  = new ConceptIdentifier ("C:/users/sam/MyTermDB");  

 
If no term DB pathname is provided to the ConceptIdentifier constructor, it will use the 
default term DB delivered with the tool, which contains only NCI, LOINC and ICD9-CM. 
 
By default, the concept identifier returns only the longest terms, not the nested terms. 
You can change this by setting the subterm identification flag to true with: 
 
cIdentifier.setSubtermsIdentification(true);  

 
  You can then call method find Terms(String pathname)  of the ConceptIdentifier  

class, passing the pathname of the text file to process, or the pathname of the directory 
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where the collection of text files is. In the latter case, the tool will go recursively through 
all the subdirectories: 
 
List<Term > terms = cIdentifier .findTerms(text_pathname);  

 
The findTerms()  method returns a list of term occurrences found in the input text(s). 

Each Term object has some information that can be accessed with the following 

methods: 
 
 

class Term 
 

String getTextPathname()  Returns a string representing the 
absolute pathname of the input text file 
where the term occurrence has been 
found 

int getStart()  Returns an integer representing the start 
offset, i.e. index of the first character of 
this term occurrence in the input text 

int getLength()  Returns the length, in terms of 
characters, of this term occurrence 

String getForm()  Returns the string form of this term 
occurrence 

String getLemma()  Returns a lemmatized (normalized) form 
of this term occurrence 

List<TermSense > getTermSense()  Returns a list of possible senses found in 
the term DB for this term occurrence 

 
 
A term occurrence can be ambiguous and have more than one sense. Each possible 
sense is represented with a TermSense object that has the following methods: 
 

class TermSense 

String get CUI()  Returns a string representing the UMLS 
concept unique identifier (CUI) assigned to 
the term sense when available, null otherwise 

String []  get Types()  Returns the UMLS semantic types assigned 
to the term sense, if available 

String get AttrValue ( String attr )  Returns the string value of the attribute “attr” 
for this term sense. If the term DB being used 
contains UMLS terminologies, then you can 
access to the terminology codes by using the 
terminology identifier as an attribute. E.g. 
getAttrValue(“SNOMEDCT_US”) will return 
the SNOMED-CT codes for that term sense. 
See section 2.5.1.2 for more information 
about terminology identifiers. 
Additionally, “attr” can be any attribute 
provided by the user when compiling tsv-
formatted terminologies (see section 2.5.2).  
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3 Extraction of relations and attributes: 
enhancements and experiments with the ML 
component 

3.1 Enhancements to the machine learning based component 

Whereas the NRC ML component was designed to determine the relationship type 
between a pair of concepts within the same sentence, it allows for two additional types of 
usage. The three types are: 

(1) labelling an entire text segment with a class label, for instance, this sentence 
describes a patient who currently has fever; 

(2) labelling a concept within a text segment with the applicable assertion type 
(hedging). For instance, the concept “pneumonia” is confirmed / ruled out / 
hypothesized / etc; 

(3) labelling a pair of concepts within a text segment with their relation type, for 
instance “a causes b”, “a is a treatment for b”, “ a happened after b”, etc. 

The type of usage is implicitly specified as training and testing data is formatted: if no 
concept is provided, use-type 1 is assumed, if one concept is provided, use-type 2 is 
assumed, and if two concepts are provided, use-type 3 is assumed. The usage 
instructions as provided in the software give further details. 
 
Technical testing of the ML based component revealed speed performance issues, which 
became more pronounced as data set sizes increased. Two key improvements were 
implemented: 
 
(1) several inefficiencies were corrected in the Java code that transforms free text into 
feature vectors. In most programming languages, and certainly in Java, there are multiple 
constructs available to complete the same operation. Since in this component, some 
operations are repeated thousands of times, a small speed increase per operation can 
accumulate in a substantial overall speed improvement. Several of such improvements 
were implemented in the code, notably at the point where strings are concatenated, and 
where arrays are sorted. 
 
(2) the external classifier component was switched out for a faster algorithm. Originally, a 
multi-class Support Vector Machine (SVM) implementation was used: LibSVM. This is 
known to be not the fastest implementation of SVM, with notably SVM-Struct being 
dramatically faster. However, LibSVM had been chosen since it can be used under a 
much more permissive license, and since its native Java implementation integrates better 
with the rest of our code. Its slow speed, especially during the model training phase and 
even when using the linear kernel, proved to be a true bottleneck. During discussions 
with EURECA partners, it was proposed to try LibLinear [Fan et al., 2008], a classifier 
based on logistic regression algorithms, as a faster alternative to accomplish the same 
task. This exchange proved to be successful, as it did give a dramatic speed increase 
without harming the functional performance (see the experimental report later in this 
chapter). 
 
A further shortcoming in the implementation was detected but as yet not fully solved. The 
program currently uses a bit too much memory. A more sparing use of memory should 
allow the system to run more efficiently on systems that do not necessarily have large 
RAM capacity. Currently, some intermediate feature representations of input text are kept 
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in memory, whereas those could safely be discarded once the final feature 
representation is calculated (freeing up the memory). Inefficient memory use can 
occasionally lead to overload errors (program crashes), but more usually to a drastic 
performance slow-down as virtual memory is created and consulted on a permanent 
storage drive (hard drive or solid state drive). 
 
 

3.2 Experiment 

 

3.2.1 Introduction 
Since in-house test data are not yet available (i.e. we are referring to manually annotated 
real free texts serving as a reference for quantitative evaluation, from EURECA use 
cases dealing with free texts), the NRC ML component was evaluated using a 
benchmark test and the textual data that is associated with that test. This test was 
designed, and the data collected and annotated, for one of the editions of the i2b2 
Clinical NLP Shared Tasks. In such tasks, the same problem is solved by participating 
teams, in such a way that results and methods can be fully compared afterwards. As 
participants to this edition of the i2b2 shared task, the NRC researchers had been given 
access to the data; follow-up experimentation was permitted by the data use agreement 
and covered by the original ERB approval. 
 
The experiment, following the protocol below, was run twice: first on the NRC ML 
component as was delivered under D3.2, and then on the component after 
enhancements.  
 

3.2.2 Method 
 

3.2.2.1 Task description 

The task that is under consideration here is a replication from the 2010 i2b2 NLP 
challenge [Uzuner et al., 2011], specifically the ‘Assertion’ subtask (second subtask) in 
that challenge. Given ‘clinical problem’-type concepts in their context (sentence / 
paragraph / report), the task is to assert whether each concept is present, absent, 
possible, hypothetical, conditional, or associated with someone else. This task maps 
seamlessly with the second usage type of the NRC ML component. The six classes are 
defined in full in [Uzuner et al., 2011]. To summarize, their meanings are as follows: 
 

¶ present: patient experiences the problem 

¶ absent: physician states that patient does not experience the problem (e.g., “no 
fever”) 

¶ possible: physician questions a problem, or states it as a possibility (e.g., “test for 
HIV”, or “pneumonia?”) 

¶ hypothetical: a problem might develop later on (e.g., “see me if fever develops”) 

¶ conditional: a problem only occurs in certain circumstances (e.g., “short of breath 
when walking stairs”) 

¶ associated with someone else: usually part of family history (e.g., “mother had 
breast cancer” 
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3.2.2.2 Data description 

Data for this experiment had been collected by the organizers for the 2010 i2b2 NLP 
challenge [Uzuner et al., 2011] and consisted of discharge summaries and progress 
notes from three clinics in the USA. All text was in English. Concept annotations were 
provided as character offsets in the text for all clinical concepts, along with their type 
(‘problem’, ‘test’, and ‘treatment’). The training set contained 11,968 ‘problem’ concepts 
(and therefore training instances) from 349 documents; the test set contained 18,550 
‘problem’ concepts from 477 documents. Data was re-formatted to adhere to the input 
requirements of the NRC ML component. 
 

3.2.2.3 Study question 

Purpose of the experiment is to assess how the NRC ML component scores on this task, 
both absolutely and compared to state-of-the-art systems, and to scan for potential 
weaknesses. 
 

3.2.3 Evaluation metrics 
Primary metric is the micro-averaged F1-score. F1-score is the harmonic mean between 
precision and recall. As this primary metric is vulnerable to overstating the performance 
on a data set that is dominated by a majority class (which is the case here, to some 
degree), the per-class F1-scores, precision, recall, and their macro-averages are 
provided as secondary metrics. Finally, computation time is reported as the indicator for 
computational efficiency between the two systems. 
 

3.2.4 Results 
Table 3 lists the results for the original system as a confusion matrix, and gives precision, 
recall and F1-scores. The processing time using this system was approximately 75 
minutes on a desktop computer (dual 4-core Xeon processor, 12 GB RAM). 
 
Table 4 lists the results for the NRC ML component after system improvements. 
Processing time shrank a full order of magnitude to 7 minutes 20 seconds on the same 
computer. Even though the improvements were purely designed for better efficiency, 
accuracy may have improved slightly and certainly showed no signs of degradation. 
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prediction 

 
present absent possible 

condit- 
ional 

hypo-
thetical 

someone 
else 

tr
u

th
 

present 12685 192 89 11 42 6 13025 

absent 353 3224 18 1 12 1 3609 

possible 484 19 377 1 2  883 

conditional 103 16 1 51   171 

hypothetical 120 8 6  581 2 717 

someone else 36 4    105 145 

 13781 3463 491 64 637 114 18550 

 

Precision 0.9205 0.9310 0.7678 0.7969 0.9121 0.9211 0.9177 

Recall 0.9739 0.8933 0.4270 0.2982 0.8103 0.7241 0.9177 

F1-score 0.9464 0.9118 0.5488 0.4340 0.8582 0.8108 0.9177 

Table 3: Results for the original NRC ML component 

 
 

 

prediction 

 
present absent possible 

condit- 
ional 

hypo-
thetical 

someone 
else 

tr
u

th
 

present 12771 157 60 5 31 1 13025 

absent 323 3265 15  6  3609 

possible 502 27 351  3  883 

conditional 119 8 1 42 1  171 

hypothetical 102 12 9  593 1 717 

someone else 39 6    100 145 

 13856 3475 436 47 634 102 18550 

 

Precision 0.9217 0.9396 0.8050 0.8936 0.9353 0.9804 0.9230 

Recall 0.9805 0.9047 0.3975 0.2456 0.8271 0.6897 0.9230 

F1-score 0.9502 0.9218 0.5322 0.3853 0.8779 0.8097 0.9230 

Table 4: Results for the upgraded NRC ML component 
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3.2.5 Discussion 
The results from the NRC ML component show that it performs quite well, possibly better 
than initially expected. A multi-label classification task (6-way in this case) is inherently 
harder than a binary one, since there is more than one way to get it wrong, and in 
practice some of the classes tend to have very few examples which makes it harder to 
get those right. Precision was high for all classes, exceeding 80% for all classes and 89% 
for all-but-one. The dominance in the training set of the ‘present’ class caused the 
classifier to gravitate its predictions to that majority class, suppressing the recall for the 
minority classes. This can be countered by tweaking the classifier’s parameters, but in 
the current experiment, parameters were kept at the default values. 
 
The slight accuracy boost going from the original to the improved version of the NRC ML 
component should not be considered conclusive, and could be attributed to noise or to 
parameter setting variance. The original system fared a bit better on minority classes and 
leaned less towards majority class predictions. This is reflected by the macro-averaged 
F1-score (i.e., the average across the six per-class values), which was 75.2% for the 
original system, and 74.6% for the improved system. Precision and recall were 87.5% 
and 68.8% (original system), and 91.3% and 67.4% (improved system) respectively. 
 
The experiment has also illustrated that training and application of models on moderately 
large data sets is now computationally very feasible, whereas it was simply getting too 
slow with the original system. 
 
Since this data was originally compiled within the context of a benchmark competition, 
the competition results can be considered the state of the art for this data. If the current 
output had been submitted to the competition, it would have ranked 10th in the results 
among two dozen participating teams [Uzuner et al., 2011]. The micro-averaged F1-
score of the top-scoring system in that competition [de Bruijn et al., 2011] was 0.9362, or 
0.0132 higher than the result reported in Table 3.4.2. The on-diagonal and off-diagonal 
counts in that table also compare well with the numbers reported in [de Bruijn et al., 
2011]. 
 
As mentioned, the NRC ML component scores competitively compared to systems 
developed specifically for the competition. This is especially encouraging considering that 
in contrast with i2b2 submitted systems (1) the NRC ML component does not include 
syntactic resources, (2) does not include semantic resources, (3) was not specifically 
designed for this task, (4) parameters were not optimized for this task, and (5) has a 
relatively straightforward architecture (built around a single multi-class classifier). 
 

3.2.6 Future experiments 
The current experiment can be seen as a portal experiment. These overall results open 
the door for further experimentation with in-house data. Such experiments are clearly 
more expensive to conduct, and therefore riskier, than experiments that re-use existing 
data. This risk has been considerably reduced by the current results. Follow-up 
experiments with EURECA partner data will concentrate on aspects specific to the 
EURECA environment and use cases, including that data will be offered in various 
languages, might include variation in spelling and accentuation, and could contain 
transcription errors or OCR errors. 
 



WP3 D3.5,  Version 1.0 

EURECA 

ICT-2011-288048 

Page 29 of 38 

 
 
 
 
 
 

 
© EURECA <Public> 

The speed-up between the original and the improved NRC ML component allows for 
rapid follow-up experimentation, notably with the purpose of parameter optimization. 
Such tests should be done on the training collection only, using n-fold cross-validation, a 
protocol that causes an approximate n-times longer experiment cycle. Once the 
parameters are optimized, a repeat of the training set + test set experiment will be done. 
 
Several further experiments using the same data and the same paradigm have also 
become strong options for follow-up study. They are the following three: 
 
(1) introduce the Xerox concept annotator into the process; assess the incremental value 

of semantic annotation 
 

(2) replicate the third subtask of the i2b2 2010 NLP challenge. This subtask concentrates 
on establishing the relationship type between concept pairs, and maps neatly with the 
EURECA relationship annotator task. 
 

(3) possibly replicate the first subtask of the i2b2 2010 NLP challenge. This subtask 
concentrates on extracting medical concepts from text. It maps only to a certain 
extent to the EURECA concept extractor, with the i2b2 task requiring only a very 
course-grained annotation, plus limiting extractions to the longest non-overlapping 
concepts. 
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4 Conclusions and next steps 

We have described the current intermediary status of the information extraction 
components of EURECA. We first presented the new and enhanced version of the Xerox 
concept identifier, which brings novel features to answer some of the users’ needs: 
adaptability, better coverage through normalization and the identification of internal 
structures of compound terms. Regarding adaptability, the user can now change the 
source vocabularies for concept identification with no NLP expertise required, and 
integrate to the concept identifier any terminology from the dozens of terminologies 
available through UMLS, or any non-UMLS terminology like DrugBank, or even a non-
standard or homemade terminology. If the selected terminology is part of the UMLS 
terminologies, or if it is provided with mappings to the UMLS concept unique identifiers, 
the concept identifier will be able to assign UMLS semantic types and other terminology 
codes to the term occurrences it identifies in free texts. 
 
In order to offer this adaptability feature, we have separated the encoding of term forms 
from general-language lexical resources, and have developed an automatic terminology 
compiler that transforms raw UMLS or non-UMLS term sets, selected by the user, into a 
terminology database (term DB) that allows for efficient storage and lookup of terms and 
terminological information (semantic types, terminology codes and other general term 
attributes). 
 
We also designed and implemented an enhanced method for term identification that 
works with such compiled term DBs and based on sequential strategies combining 
typographical, morphological, orthographical and misspelling normalizations, 
implemented mainly with compositions of finite-state transducers. These combinations 
allow the new concept identifier to recognize non-listed variants of listed terms that, to 
our best knowledge, the BioPortal annotator does not identify (non-listed inflected or 
misspelled term forms). Additionally, the new concept identifier can now identify nested 
terms or subterms, hence exposing the internal structure of compound terms. This can 
be useful for instance in free-text query expansion, but most importantly it makes 
possible future normalization enhancements, mainly the identification of non-listed 
derivational or syntactic term variations, such as coordinated terms. 
 
Besides the new concept identifier, we have also presented the work done on the NRC 
machine-learning (ML) relation extraction component. Several inefficiencies were 
corrected in the Java code, and most importantly, the SVM classifier (LibSVM) has been 
replaced with a more efficient classifier (LibLinear) yielding a dramatic increase in the 
computational efficiency of the ML component. We have also conducted an experiment 
to evaluate this component. In the current absence of in-house test data (i.e. manually 
annotated free texts serving as a reference for quantitative evaluation from EURECA use 
cases dealing with free texts), we conducted an evaluation experiment using data from 
one of the editions of the i2b2 Clinical NLP Shared Tasks. Evaluation results show that, 
while the ML component is a generic system developed to cover a variety of EURECA 
use cases and data types, it scores competitively compared to systems that were 
developed specifically for the i2b2 competition. This experiment outcome is positive, 
especially considering that the ML component does not include syntactic and semantic 
resources where many i2b2 systems did. 
 
Future planned activities regarding the IE components include further enhancements to 
both the concept identifier and the relation extractor, and further instantiation of the 
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relation extractor in EURECA use cases or tools dealing with free texts. This includes 
instantiating and improving the components on de-identified patient data, which has 
become available through the CDP, in the context of the cancer registry reporting use 
case. We will also instantiate, in the next three months, new relation types with the 
linguistic-based component of the relation extractor, including temporal precedence 
relations (before/after/during) and quantitative comparison relations (more than, less than 
and equals to), which are relevant to the Guideline update use case. 
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Appendix A Downloading UMLS Terminologies 

• Make sure you have the right permissions/license to use said terminologies 
• Download UMLS core package (see section A.1 below)  
• Select and download the terminologies you want to use (see section A.2 below) 
 

A.1  Downloading UMLS core package 

In order to download the terminologies from UMLS you first need to download the core 
UMLS package. In order to download this package you need to go through the following 
steps: 
 

1. Create a  UTS (UMLS terminology services) account by signing up in the 

following website: https://uts.nlm.nih.gov/home.html 

It takes usually 1 to 3 days before a new registration is validated. You will receive 

an email informing you. 

2. Sign in to the UTS (https://uts.nlm.nih.gov/home.html) to access applications, 

downloads, and resources. 

3. Access the Downloads menu and select UMLS Knowledge Sources 

(http://www.nlm.nih.gov/research/umls/licensedcontent/umlsknowledgesources.ht

ml). 

4. Download and extract all UMLS files (Full Release Files) to the same directory. 
5. Read the README file (it highlights changes for the current release) before 

proceeding with the next steps.  
6. Unzip the mmsys.zip compressed folder. It contains command scripts to run the 

MetaMorphosys system, which is the UMLS installation tool. 

 

A.2  Selecting and downloading a subset of UMLS 
terminologies 

1. Open a terminal window and change to the directory of the downloaded files. 
Type the appropriate command for your platform: 

./run.bat (Windows) 

./run_mac.sh (or click on the run_mac.command file)  

./run_linux.sh 

2. Click on Install UMLS: 

https://uts.nlm.nih.gov/
https://uts.nlm.nih.gov/home.html
https://uts.nlm.nih.gov/
https://uts.nlm.nih.gov/home.html


WP3 D3.5,  Version 1.0 

EURECA 

ICT-2011-288048 

Page 35 of 38 

 
 
 
 
 
 

 
© EURECA <Public> 

 

 
3. Select the source directory containing the UMLS files downloaded in step 6 
4. Select the destination directory where you want the UMLS data files to be stored 
5. Uncheck the SPECIALIST Lexicon like shown in the following figure and click OK. 
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6. Click on New Configuration (or use an existing one by selecting Open 

Configuration) in order to be able to select a subset of UMLS terminologies: 

 

 
 

7. Accept the Licence Agreement Notice: 

 

 

8. Choose the subset of UMLS terminologies you want to select and click OK: 

 

 

9. Use the tab: Source List in order to select the list of terminologies to include or 
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exclude from the downloading: 

 

10. Once you have finished with the customization of the UMLS subset, go to the 
main menu above the tabs select: 

Done Ą Begin Subset 

If you changed the default selected subset, you will be asked if you want to save 
a new configuration file where your selected list will be stored. 

11. The subset of UMLS terminologies will be downloaded and at the end of the 
process, in the destination folder you will have the following directories with the 
respective data files: 

NET directory:  Semantic Network data files 

META directory: Metathesaurus data files 

A.3  Additional information 

¶ At the end of each year you will need to provide a report to the NLM regarding the 
way you are using UMLS data. 
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¶ Additional documentation is available at: http://www.nlm.nih.gov/research/umls.  

¶ More details about using MetamorphoSys tool in downloading or customizing 
UMLS are available with the following link: 

   
https://www.nlm.nih.gov/research/umls/implementation_resources/metamorphosys/help.h
tml 
 

 

 

 
 

http://www.nlm.nih.gov/research/umls
https://www.nlm.nih.gov/research/umls/implementation_resources/metamorphosys/help.html
https://www.nlm.nih.gov/research/umls/implementation_resources/metamorphosys/help.html

